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Abstract

This paper describes a loader algorithm for
microprogramming for the purpose of performing a
unified hardware-software design. The loader is defined
here in its broader sense of a relocatable allocator and
linkage editor. A loader algorithm is presented in detail
in a series of flow charts. To facilitate understanding, the
flow charts are explained by an example. Suggestions for
future research in implementing the algorithm in microprogram

are made.
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Alﬁoader Algorithm for Micropfogramming
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“1. 00 INTRODUCTICN

The name ?%loader?' -is- generaliy apolied o the
processoar whose dinput®. is. the output: from compilers o<
asszablers and whose output is an executable code in memory.
The earliest loader was a single input <command that
transaitted machine instructions - to: memory, while receut
loaders have ™Dheen mnmajor systems processors, regquiring
thousands -0f instructions to perform .a variety of tasks
{e.g., the TBM 7090/7094 Loader; the IBN System 360 Linkage
Editor; the UNIVAC 1108 EXEC 8 System Collector). The
increase “in th2 functional ‘importance of the loader reflects
the growth in computer systems.

The evolution of +the loader frorm a simple: mermory
allocation routine to its present form is due primarily to
the concept ‘of ~ program modularity. - Program modularity
refers ‘to’ the ‘partitioning -of a -program’s tasks into
subprograms {or subroutines). The . idea of subprograms arose
early in ‘the developrent of computers for several reasons:

{a) Minimize redundant effort.  There are many

mathematical, " data management, and bookkeeping
furctions thdat are common to many programs. - It is
wasteful for each programmer to program a function

that has already-been programmed.

(o)  Herge subprograms written in:different symbolic
' ‘languages. ' Most. ‘computer: systems reguire that

" Some parts.of every preogram {e.g. , Input/Output
routines) - ‘be .written  in the wmachine assencly

language. However, it is easier to write large



programs 1in a higher-order procedural language.
Therefore, it is beneficial if the both assembly
language and procedure-coriented languages can be
used in writing a program.

S e e e i e e e e . e e o e e Lm e o e e e e e e e i S i . e S e S it o Ao, Sy e e il s o S

amorg__several _Drogragmers. It 1s helptul if 4
program can be designed, compiled and tested in
parts and, once completed, assembled into a wholsa
without additional programming.

Iinitially, subprograms were awkward and hard to

use
This was dJdue to the problem of naming conflicts. Nam

O

space, “he set of addresses generated by a compiler for a
program, is distinct from ajdress_space, the set of physical
memory locations. WFhen a program 1is located in memnmory,
eitner the name space must be coincident with the address
space, or ther2 must be a fixed procedure to map one space
to anothar.

Obviously, problems occur when the intersection of the
aldress space of two separate subprograms is non-empty. For
example, if the name space of subprogram A maps to address
space 100 through 150 and the name space of subprogram B
maps tc address space 120 through 180, a conflict exists in
locations 120 through 150. In the earliest computer
systems, a subprogram was written for a fixed location in
address space. Assemblying subprograms into a progranm
required that there were no naning conflicts. This
requirement made it extremely difficult to include even a
few subprograms from previous applications. It is
impossible to imagine procedures of this sort being carried
out on modern systems, where the name space of subprograms
available to a programrmer is several hundred times greater
than the address space.

The probiem of naming conflicts was resolved by the
development of the relocatable subprogram. The idea was to

have the compilers and assemblers produce subprograms that



counld Dbe located anywhere in menory (address space) and b=
considered properly located. There are several methods of
doing this:
(m Addressing relative to_ the executing instruction .
It all addresses. are relative to a cursrant
peinter, then mname space is always coincidant with
address space.

(2) Base_register_addressing . All addressing is

relative . to the tirst location in the subprogran.
"Whatever memory location the first subprogram word
occupies is loaded into a base register. In order
to .-make name space and -address space coincident,
the addresses- in the subprogram are alded to the
base register.

(3y - Adjustment of namespace . This method requires
that as a subrrogram is loaded into memory, each
address be properly 'modified to «coincide with.
adiress space.

The third method has been the most common method used in
computers although recently both methods (1) and (2Y have
re-emnerged in major systems [ 1] [2]- ‘Both of these: methods
require special hardware considerations 1in the form of
ragisters and logic circuits. This tendarncy. of. hardware
solutions to  follow software solutions 'will be examined
further.

Naming conflicts are not the only problems raised-
through - the introduction of .relocatable subprograms. Ip
addition, there atre the:problems arising from the inherent
incompleteness of subprograms:

- How doeS the-compiler resolve undefined ‘references?

- How are the subprograms linked together?

-- How are addresses distinguished from data?

The answers to these problems and' thke resolution of
naming  conflicts "is outside the realm of the compilers ard

assenblers that compile or assemble subprograns, because the



language processors are not omniscient. 1In other words, to
pr=dict the program that a particular subprogram will belong
to is 1impossible. Indeed, a particular subprogram can
become a part of an infinite number of progranms.

Therefore, if program modularity is desirable, the role
0of compilers and assemblers must <change, The task of
generating executable code nmust be replaced with the task of
generating relocatable subprogranms.

Historically, the task of gererating an executabdle
program from the set of relocatable subprograms, known as
relocatable ailocation, was assigned to the loader. For
this reason, the name 1is generally used to cover those
processors that perform relocatable allocation. As the
loader has evolved, its functions have grown to include many
other functions besides relocatable allocation and address
linkage. These include subprogram library searching, memory
ovarlay, and, 1in some systems, file and buffer pool
initialization. Recent systems have divorced the actual
loading of memory from the program generation allowing the
programmer to store the completed program until loading is
desired and eliminating the need for re-allocating the set
of relocatable subprograms with each request for execution.

The purpose of this paper 1is to emphasize the
desirability of unified hardware-software design in the area
of operating systems while at the same time outlining the
functions and method of the loader, a basic subsystem of
every operating system. Experience has shown that given a
hardware configuration, software can be shaped to perform
all the necessary tasks required of the systen. Similarly,
whatever can be performed in software can surely be
implemented directly in hardware. Both cases are expensive
and wasteful when carried to extremes. However, the burden
of software can often be significantly reduced by the

simplest of hardware additions (e.g., index registers). For
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this r=ason, it .is desirable to view a computer sSystes in
l1ight of the functions that are used .frequently.

The approach is not new. The necessity for millions of
accurate - calculations - in various applications 'irn the
Scientific community has led to sophisticated -hardwar £o
high-precision floating-point multiplication and divide.
Tha necessity for precise handling. of decimal nushers in
large accoupting programs has lel to the development of
hardware for decimal arithmetic.  The contention of this
paper is that in contemporary systems, some of the progranms
that are used most frequently are the systems processors
themselves. ‘Therefore, it is in this area that we shoul?l
explore for the correct software-hardwvare mix.

"The loader 'is a good. subsystem to- examine in this
context. Either the loader itself or "the functions it
performs are common to all operating systems. :It performs a
non-ttrivial set of: functions at 1least once upon most
prograns that are processed by the computer. The inputs ani
output of the 1loader <can be described precisely,. and the
algorithm for loading can be specified with a a@inimum of
knowledge about the ‘environment of the rest of the systen
which it operates.

The snecific approach of the paper will be to define a
loader, to present 1its inputs and output, to present an
algorithm for a loader, to discuss the algorithm in terms of
unified hardware-software design, to present conclusions,
and to make some recommendations as to further areas of
study.

The definition of the loader is presented in section 2,
accompanying the presentation of terminology, assumptions
and restrictions. Section 3 preszants the input and output
descriptions. In addition, a brief discussion of the
differences that exist bstween loader inputs (e.g., packing
of information) is included. Secticon 4 presents the

algorithm for the loader together with a series of flow



charts and accompanying description. Sections 2, 3, and i
includ= 3iscussions of alternative methods of formatting the
information and performing the loader functions.

32:tion 5 presents the discussion of the 1loader fron
the ooint of view of a unified hardware-software design.
5averal functions are specified as warranting closer
2xamination. One function, the translation of relocatable
coda to executable code, was implemented as a microprogram
in an earlier report. This study is referenced,
a brief comparison 1is made with the corresponding
functions in an existing system, and the effectivaness of
this implementation is discussed.

32a2tion 6 contains the conclusions and recommendations
for furture study. The appendices present a syntactic and
semantic specification of the input to the loader in Backus-

Naur Form and a bibliography.

This paper is meant to serve two classes of readers.
The first set of readers may use this paper to learn some of
the hasic technigues involved in the execution of a 1lcader.
Tor the other <class of readers (those interested 1in

microprogramming) this paper has been orgarized to point
directly to a wmicroprogram implementation of the algorithm

presenteld.



2.0 THE DEFINITION OF THRE LOUADER

In presenting the definition of the loadery, w»  will
discuss its evolutionary development, outlining the ontojany
of a program fror symbolic code to axecutable coila, In
aidition, functions of the loader described within %this
vapar will be outlined, and assumptions about ard

restrictions to the algorithm presented.

Most contemporary digital computers are designedl to
execiite - programs c¢onsisting of machine instructions with
absolute addresses. These instructions are stored 1in a
memory consisting of a set of registers, each with a unigus
memory address. An absolute address differs from a m2nory
address by, at most, a fixed conrstant. In particular, if A
is the s2t of memory addresses, and b is a harvdware
address, then A is the set of absolute addresses permissihblsa
for a program, A={ala=m-b , a20, for every 'm in M}. A
prograim written in such machine instructions is called an
gzggggiggg_ggggi' The set of instructions that +he @machine
Wwill ¢x=ecute 'is called the machine_langquage. For this paper
a projrais can be considered to be a block of n memory vwords
assigaed absolute addresses a{0), a{(ly «w. , a{a-1) (whers
a{i)=a{i-1)+1) and consisting of machine irstructions and
data.” Within this paper, the tegqguirement that distinguishes
a ptogram from a subset of the program is that no mwachine

instruction may directly reference an absolute addr=ss
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outside the range a{d) to a{(n-1).

Proyrams are written either in a symbslic asseably
linquage or in a syrbolic procedural lanquage or bkoth. The
symbolic code used ir the lanquage refers to itezs ani
locations within the program through assigned syabolic

adiresszes. It is usually impossible for a programmer to
grasp all of the details of a large program all at once so
that programs are rarely written in their entirety as one
larg> interlocked algorithm. 1In general, they are written

15 a set of <control sections. A control _section 1is a

contiguous piece of a program, either a subprogram or part
of a subprogram or a common area. A supprogram is a part of
a program. Subprograms reference locations both within and
without themselves. A reference to another subprogram 1is

called an external reference. A location in a subprogranm

that is assigred a symbolic name and that can be referenced

fron another subprogram is called a global_address. An

address that is an arithmetic conbination of addresses
within and without the subprogram 1is «called a complex
address. In addition, subprograms can specify a data area

as common to several subprograms. Such an area is called a

common area. If the contents of the comnmon area are

specified, it 1s said to be a defined common area., An

example of a defined common area is the FORTRAN block data.
If the <contents of the common area are not specified in a

subprogram, then it is said to be an undefined _common__area

and is considered not to be a part of a subprogranm.

The translation from symbolic code to executable code
occurs 1in two steps. During the first step, the symbolic
code 0% a subprogram is translated by an assembler ({in the
case of assemblyrlanguage) or a compiler (in the case of a
procedural language) to an intermediate form that can be
linked with the other subprograms to form the conplete
program. In this manner, subprograms written in different

symbolic languages can be joined together. This



interrmediate form is called a relocataple _element becaus~
the subprogram contains information which allows 1% tn b
locatedl at an absolute address. The machine iastructions
and data in the relocatable element are called a relocatanla

codr, Aldresses within the subprogram are relative to ta=

Begqinning of the subprogram and are vcallad gelative
aliresses. The relocatable element consists DT the
relocatable coda and tables of the symbolic =2xternal

referances, the symbolic global addresses, th2 symnolic
conmon areas, and the complex addresses, Functions that are
often uséeéd by one or more programmers are wWwrittea as
siubprograms translated 'into relocatable elements, - and
stored on mass storage in a subprogram library for later
use.

At this point, the concept of name space and address

space are re—introduced {3]. Address_space is the set of

&

memory locations and is denoted M. Name_space is the set of
addressns used by 3 program to refer within itself. Thi
includes both internal and external addresses. The set of

—_—_a

set of external addresses is called the g;gbgl name Sbace.
Tf w2 denote the local name space by N, then for a set of
control sections {ci, c2, ¢3, ..., Ck}, each has -its owun
local name space N{c1), N(c2), N{(c3), -es=, N{(ck). The
local name space generated by a compiler or assembler for a
subprogram J regquirirg n locations in memory is the set ¥ {J)
= {0,152500eay 0-1}. These are ‘the relative addresses
defined above.

The second step of the translation to executable code
for a set of control sections {c1,c2, ...,ck} is to adiust
the 1local name space o0f each subprogram such that
N{Ci)fyn(Cj)=0, for 1<i<k, 1<j<k, i#j (where O is the null
set). This process is called relocatable _allocatiocn and
consists of assembling all subprograms necessary to complete

the proagram, linking all ex*ternal references to the
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corresponding global addresses, adjusting the size of cormon
areas to reflect the largest declared size, 3assigning each
contrel section Ci an absolute address such that ¥ (Ci) is
unique, computing the complex addresses, and translating all
telocatalble code to executable code. This final step
adiusts all relative addresses in each control section to
conform to the new name space.

The product of the translation 1is an exscutable
progranm, suitable for loading 1into memory, <called an

absoiute element. The absoiute element cornsists of (a) the

executable cod=2, (b) information as to the location at which
the executable code is to be loaded, and (c) the starting

address. The starting _address is the absolute address of

the first instruction to be executed.

The previous section ignored the problem created by the
group of prograns for which the name space exceeds the
address space. The solution to the problem is to have a
mechanism for placing only a portion of a program's nane
space into address space at any one tinme,. Many specific
methods of implementation exist such as paging and overlay.
This report will limit itself to overlay.

Cverlay applies to those programs that require a
sequence of separate furctions, represented as one or more
subprograms, to be applied to ar input data set. The
aggragate of all the subprograms exceed the available menmory
space, but the requirement of memory space at any one time
lies well withir the limits.

The technique of overlay is outlined by the following
simple example. The user program is divided into blocks of

contiguous code, termed segments, the functions of which are



rutuallv exclusive. Each seghent corntains one  oHr moyo
control’ ‘sections. The segmert: containing <the starring
address 1is «called the main “segnent. The nain =oagnns,
always resident in memory, defines the Zlow- of the progr-.nw,

maintains all information *that pist bo transfeired hetwoaonm
the subprograms that are in npon-resident seagments, and
cJontains suoproarams that are referenced by move than one
sagment, The remaining menory is defined as  the overlay
space, and segments are loaded into this area as ooguestad
oy the main segment, overlaying the sechent proviously
occupying the area. As will be seen below, the user is not
raquired to have a resident segment nor is he limited. to a
single l2vel of overlay segments.

Responsiblity for overlay - is split betwean the user and-
the " systenm. Ls the user can most easily recognize the
gen=aral rlow of control in his program, he nust  supply the
necassAry segmertation and structural information. The
system, in particular the loader, provides the allocation of
space, recognizes inter-segment accesses, and provides a
mechanisa for loaiing A reguested segment. It should be
noted that most programs do not reguire overiay and that the

use of overlay is optional to the user.

2.2.1 The Overlay Structurs

The corncept of 'a main program calling a series of

arara

D

independent subprograms, each subprogram in a =e
segment, lends itself to extension. If each subprogram 1is
viewed the same way {(i.e., as keing a secgucnce of mutuaily
independent subprograms called by a main program), the the
segmented structure can be theoretically extend2l to an

indefinite numbher of levels.
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An interpretaticn of this extention to the overlay
structur> is the tree structure. Irn the tree structure, tho
wiin segment 1is termed the root, and all segments it
directly references are considered as roots to subtrees. A
single segment sub-tree is called a twig. Since, in a tree,
there are no circuits, the definition implies that between
the root and any twig there is a unigque path.

¥ithin the structure, a sub-tree'!s root segment has a
level derined by the number of segments above it (toward the
root). For example, the main segment's level 1is 0, the
segrents 1t refers to have level 1, etc. Figure 1(a) shows
a tree structure of a segmented program and Figure 1{b) the
corresponding memory allocation of the segments. The
horizontal lines separate seqments that occupy core at the
same time; the verticle lines separate segments that overlay
each other. For example, branches A-E and B-G-H cannot
exist in mernory at the same time.

Many conventional loaders use the concept of a tree-
structure overlay. This philosophy requires that any one
segment can directly access only its own descendants or
segments of which 1t 1is a descendant. The advantages to
this type of structure are in the placement of control
sections {common areas or subprograms) referenced 1in
overlaying branches. These are logically placed in a root
segment of Dboth branches. Both the IBM 70930/7094 Loader,
IBLDR (4] and the IBM System 360 Linkage Editor [5] employ
the tree structure. However, the Linkage Editor allows the
user to divide his address space into regions, each with its

own tree structure, anrd allows references between ragions.
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However, as the responsibility for definition of the
overlay structure is given to the user, it seems unwise to
impose any structural 1limitations upon him that can bhe
avoided. In particular, the imposition of a tree structure
does not allow separate branches to reference the sane
subprogram unless that subprogram exists ir a segment that
is a common root to both. For example, 1in Figure 1(a),
segments D and F can only refer to subprograms in segment
MATN. (Arguments against the rigid tree structure have been
outlined by Bernadine Lanzano in {6}

In order to allow as mnuch freedom as possible, the
loader described herein leaveé the definition of the
structure to the user. This i1s the method wused by the
UNIVAC Collector [7]. A nulti-leveled structure is
available, but there is no implicit tree structure in it.
Segments that directly precede a segment in the structure
are called the predecessors of that segment, while the
segments that directly follow the segment are called the
successors of that segment. Fiqures 1(c) and 1(d) present
an example of this type of structure and allocation. In the
example, segments A,B,C,and D are successors of segmeﬁt
MAIN, but segments G,I, and D are predecessors of segment J.
It should be noted that the names 1in the ekample are
assigned to the segments and not to memory locations (i.e.,

the name implies an area of memory, not a point in memory).

2.2.2 Inter—-segment Transfers

An instruction that transfers control from one segment
to another 1is called an inter-segment transfer. A loading
subprogram (named $LINK$ herein), is provided by the systenm
to perform inter-segment transfers. Its task 1is non-

trivial. It must identify the instruction request with a



particular 1location ir a segment, check to see if that
segment is in memofy and if not, load the segment into the
proper location in main memory. Once loaded, control nust
be transfered to the correct location in the segment. There
are extensions of this list of requirements; for example,
the saving of the block of .memory which was overlaid. This
paper will not be concerned with further refinements of the
overlay concept. Suggestions for future research will be
found at the conclusion of this paper.

" An inter-segment transfer is possible only from branch
instructions refering %to a global address. Only these
addresses allow the loader to determine the segment to which
the transfer is being made. This does not include branch
instructions suck as subprogram returns (e.g., in most
modern computers, these are instructions-that branch to the
addiress contained in an index register). In these return
instructions there 1is no way to recognize that the branch
instruction should be preceded by a segment overlay. This
is the primary reason that inter-segment transfers are to be
avoided - between segments.  that overlay each other. An
exception to this 1is when all references between segments
that overlay each other are explicit, as in the case of co-
routines {[13] [14]. In the <case of explicit references
batween segments, the recessity of a resident main prograxn
is obviated. Therefore, the only required resident portion
of the program is the segment 1loading subprogram and the
linkage table. .

- The mechanism can be described as follows: (1y for
every  global address that is referred to from another
segment and that is in a non-resident segment (only the main
segment 'is resident), provide a unique resident address
called the linkage ‘address, {2) at this address place the
actual apsolute address of- the -global address, its
corresponding seqment identifier, and a branch instruction

that branches to a routine, $LINKS$; (3) at each reference to
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the global address £from another segment, furnish the
corresponding linkage address; and (4) include in the main
segment the routine, S$LINK$, and a 1list of segments arnd
their mass storaqge locations. The effect is to force a
branchk to the dynamic 1loading routine, $LINK$, at every
inter-segment transfer. $LINKS loads the correct segment,
if not in core, and transfers to the correct address. The
definition 'of the entries at the linkage addresses (linkage
table) and the segment list (segment table) can be found 1in
section 2.2,

In the cases in which the user desires to overlay
segments that <contain only data, a different facility is
rejuired. As no transfer will occur, automatic 1loading is

Qdifficult to implement. However, a simple solution is to
have the user request a segment be loaded. This 1is:  easily
effected by adding an entry point in $LINKS that is branched
to whenever loading is necessary and adding the segment nanme
to the segment table.

Another enhancement. to the system would be to  have
$LINKS$ "swap" segments (i.e., copy-out and copy-in) in order
to preserve the changes made within any one segment.. It
should be noted that this requires changes only to the
definitor of $LINK$ and not to the loader algorithnm.

The segmenting of the program is primarily a
responsibility of the user. The user must specify which of
his subprograms must appear vwithin each segment. However,
it is the 1loader which vperforms the subprogram library
search and attaches these to the program. In addition, the
loader must decide where to 1locate the undefined common
areas. To which segment does the loader attach the 1library

subprogram or undefined common area? The answer must
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satisty three rules:

(H The loader should never be responsible for inter-
segnent transfers betveen segments that overlay
eacihh other, This is a decision that must be left
to the user.

(2) The loader should attempt to minimize the number
0of segment loads as these require a suspension of
computation.

{3) The loader should not be responsible for inter-
segment rererencing of data. References of this
type do not involve a branch of control and nmake
the task of automatic segment loading extremely
difficult., (Note that this does not preclude
demand 1loading of data segments through $SLINKS.)

The solution chosen to solve the overlay problem 1is
based wupon its simplicity of implementation. As the loader
encourters references to library subprograms, it attachs the
subhprogram to the segment that contains the reference. If a
library subprograr in segment A references a global address
in a segment which will overlay segment A, then the library
subprogram is detached from segment A and attached to the
main segment {always resident). This also occurs if the
library subprogram in segment A is referenced from any other
segment. Undefined comnon areas are attached to the main
segment automatically. This solution satisfies the three
rules.

Although the above method is simple to° implement, it
may 1lncrease the size of the main segment an undue amount.
A more satisfactory method, although more complicated, would
be to borrow the method of the tree-structured overlay, and
move the common area or subprogram to the nearest common

. predecessor segment.

2.3 The Functions Of A Loader
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Within this paper, the functions of the loader will b=
Jefined as those functions occuring in the second step of
rhe trarslation from symbolic code tc executable code and
tae implemnentation of overlay (sections 2.1 and 2.2).
3riefly, these can be outlined as:

(a
(

{(¢) adjustment of rame space,

subprogram ccllection,

~—

4

») 1nter-subprogram linkage,

>

{i) reiocatable translation,

{e) overlay implementetion,

{f) Xoading of the program.

These are primarily the functions performed by the
loaders 1in sys*ems such as the GE 635, CDC 6000 series, IBM
7¢20/70%04 IBJCB System and the UNIVAC 1107 EXEC 2 Syster.
dowever, more recert systems have included processors that
perform all the functions short of progranm loading.
Exanples of these are the Linkage Editor of the IBM 360
Series and the Collector of the UNIVAC 1108. A few systenms
have a different concept of name space and require that only-
a subset of these functions be performed. The Burroughs
B3500 uses adidressing relative to hardware registers and
thnrefore does not require adjustment of the name space at
load-time [1]7. The MULTICS system performs its loading
dynanically at execute time in a virtual memory system and
therefore includes these functions separately withirn the
"whole system structure [217.

Therefore, although +the functions previously assigned
to the loader are now being reassigned, these functions are
Leing periormed by modern systems. For this reason, we are

justified in studying the loader as a single subsysten.



In addition to the criteria . of portability,
reliability, and short lead time presented in section 1, the

ilgoritnm is designed with the following criteria in mind:

(a) Simplicity . Tae algorithm should be easy to
follow.
(o) Efficiency « The algorithm should net waste

processing time or.-memory needlessly.

(c) ‘Minimum_restriction_on_user . This algorithm

should minimize user restrictions.

(2) Machine-independence . The algorithm should not

nake undue . assumptions as to the hardware
configuration or basic operating systen
philosophye.
The first three criteria are used as the basis for decision-
making - where alternatives present themselves. The fourth
criteria 1is met by presenting the algorithm in- the
environmant of a nminimal system. Indeed, the loader was
choser for this study in that it itself defines a - minimal

oparating systen.

The loader described is corsidered to be one subsystem
of the operating system. The operating system is defined as
a number of subsystems (language processors, file routines,
the I/0 control system,. etc.) under control of a =monitor
program. One of the monitor's functions is to interpret.
system control commands in the input stream. For some input

commands, +~he monitor loads a program from mass storage (0
L4

mapory and rTelinquishes control to the program. A program
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may b2 a system processor or a user progran. Uron
corpletion of the program the monitor assumes control andi
interprets the next control command.

The operating system operates within a conventicnal
dijital computer «consisting ¢f a central processing unit
that operates on the cortents of the main mewmory. An
auxiliary memory, termed mass storage, 1s provided for
information storage. The main memory, hereafter called the
memory, consists of a set of addressable registers, the
contents of which are called memory words. Mass storage
will ©»De considered to be a number of addressable storage
devices, called I/O units that store information lineally in
blocks of information called records. A record is defined
as containing an integral number of memory words. Any one
I/70 unit 1is limited to addressing records (i.e., single
words cannot be distinguished in *he I/0 unit).

The algorithm is based in a word addressable memory but
it is weasily translated to a byte addressable machine. In
fact, once the algorithm is examined it will be seen that a
byte addressable machine would be preferable.

In order to clarify the algorithm, ar example is traced
through the major steps. This requires that the machine
environment in which the loader operates be specified as to
word and field lengths. Tt should be noted that this is
done nct tc restrict the algorithm, but to clarify tkhe
example.

The format <chosen 1is basically that of the IBM
7090,7094 ([8]. This has the advantage of allowing a direct
comparison of two system approaches. A nmemory word 1is
defined as 36 bits of information. These bits will be
numbered left to right from 0 to 35. Each memory word is
addressed by a 15-bit address. There are two address fields
in a memory word, bits 3 through 17 in the first half of tte
word and bits 21-35 in the second half of the word. Fach

word is logically divided into 6 groups of 6 bits each
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called. rcharacters and U4 groups o9f 9 bits each called bytes,
This distinction betweern the character size and byte size is
made solely Dbecause it is convenient to the descripticn of

the algorithn.

2.4.2 Basic_Restrictions_On_Format

As information in a computer is all numerical (coded),
a method of interpretation must exist which 1s non-
ambiguous. The interpretation of a piece of coded
information 1is not a function of the data, rather it is a
function of the interpreter (e.g., if an arithmetic
instruction expects to find a floating-point number at a
given address it will interpret whatever data is in that
location as a floating point number). Therefore, the
location and extent of a piece of information must be made
known to the interpreting function.

An addressable piece of information is a field. Fields
may have a variety of sizes (the larger the field, the more
information it can hold). The 1location of a field 1is
specified by an address. An address is always relative to
some point: the first location in core, another address, or
simply the next piece of information. In a binary conmputer,
even though conventional addressing may be word or byte (an
integral part of a word), it 1is generally possible to
extract information by bits. A field may be comprised of a
single bit (if there are only two conditions for the piece
of information it represents).

The address of a field marks the beginning of the
field. There are two conventions for indicating the extent
of a field. ©One is to mark the end of a field with son=
unigue code. The other is to provide a priori kncwledge of
the field length.

Tha problems with using a mark to denote an end-of-

field condition are: (1) a specific code pattern is made



22

unavailable, and (2) interpretation of fields of this type
is slowar because of the search and test operations. A
priori xnowledge of field lengths presents itself as the
best alternative in  this application for several reasons:
{1) the knowledge exists as a by-product of the relocatable
machine language generation, (2) efficient use can be made
of smalli fields, and (3) retrieval of a field of infcrmation

is faster.
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"This secticn descrikes-the inputs ard cutput' cf the
lcader 1ip. detail. '~ The 1input toc the lcader is the cutrgput
frcr the =system's "language processors. As ‘this repcrt
ccvers * the: function <¢f the 'lcader alone, ‘it is essential
that it nct change the relationship tbetween :the 1language
coppilers and the 1lcader. ‘This means that it should nct
take over any functicns cf or place any further reguirements
updn the 1aﬁguaqe'prcdéssors. Therefore, the input defined
kelow differs 1little ‘froer that cf existing: lcaders 'in
content, although the fcrmat may ke somewhat unique.

The cutput frcm the lcader is the aksclute element, an
executakle prograu etcred ¢n mass storage but 1r a fcrm that
allcws it tc Fe 1lcaded eaclly into memcry‘ for execution.
Twc of the reascns behind the decision tc separate the
ccllecticn and linking of relocatable elements frecr the
lcading - ¢£ memcry are given Lelow. First, ‘the actual
l¢ading of '‘mefcty is a simple function that hag little to¢ do
witFP ‘the " fermaticn of executatle code dnd more rightfully
telcngs as a part cf the 'résident ‘monitor. Second, the
outrut frem the lcader is an executable program that can ke
ctored 1ndef1n1te]y. ‘Ihic decreases the arcunt cf time
requ1red tc execute a prcgram as it remcves the a=semb1y1ng
cf relccatalkle elements. The trade- off is that it creates
more stored 1nfcrmat10n° However, pass etcrage 1c generally

1nexpen51ve ccmpaxed te prcce551ng tlme.

¥



The input tc a lcader 1is a set o¢f  user-specified
subgrcgrarns and, possitly, a user-specified cverlay
structure. The subprograms are in the form <c¢f relccatakle
€lerents, cutrut frcm a compiler or assembler. This section
rresents a discussion <c¢f the relocatatle elerent as
generated by a ccrpiler, a specification for a lcader input
{tc e used by the algorithm in section 4), and a trief
ccrpariscn cf this input specification with input to
existant lcaders. A ccncise description of the input to the
loader 1in PBackus-Naur Fcrm is presented as an appendix to
this paper.

3.1.1 The_Felccatakle Element As Ccmpiler Cutrut

o ——_——— o — " . ————— — — — —— . T~ T p— i Vi WS e ut. —

The role cf a compiler cr assembier as a syntax-checker
or machine instructicn generator is not severely limited Ly
the fact that its input is sukrrogram (inccmplete) rather
ther a frcgram (complete). However, it is required to do

rcre in the first case.

First, the ccepiler must'specify in some wmarner which
rcrticns c¢f the prcgram will change in the name space
adjustment. In most cases, this means each address field.
Seccnd, it must preserve a list of those symkclic addresses
tkat remained uvndefined at the end of compilation (undefined
addresses) and a list of their occcurences. Third, it must
rairtain a 1list cf those locations within it that can te
syrtclically referenced (glctal addresses). Fourth, it nust
raintain a list cf data areas that are to be allccated

cutside the =subprcgrar fcr ccmmon use (ccmmon are€as).
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Finally, it must keep track cf the size cf the sukprcgram it

tas gererated.

Therresult ctf the effort descriked akcve, inoperly
fcrnatted, is tte relocatakle element. As 1lcng as a
ccopiler c¢r assenbler retains this informaticn, the
fcrratting is sirple. 1In fact, recent systems (e.g., UNIVAC
1108) include cne sukprccessor that generates relccatakle
€lenents fcr all its 1language precessors. Therefore,
refcrmatting the relocatable element becomes a simple

rrckler cf changirg one pregran.

3.17.2 Inrut_Srecificaticn

The input tc the loader consists of a series cf contrel
reccrds. A ccntrcl record is defined here as a recerd whose
first word is a ccrtrcl werd recognized by the System or ty
a system ptbcesécr (in this casé, the lcaderj; The set cf
contrel werds that are defined as reéognizable are: $ABSLT,
§SEC, $Rilcc; $UNC, $DEF, 3$COMN, $CﬂPLX, and $TEXT . The

rame. of the cocnticl reccrd is defined as the ccntrcel word.

 The contrcl record $ABSLT, shown in Figure 2({a), causes
the monitér prcgtam tc give ccntrel to the‘léader, It is a
syrtclic recctd ccnsisting cf the ccntrel werd $ABSIT
fcllowed by at least one blank space and five fields (ANAME,
CUTC, INU, 1IB1, CK) separated bty commas. The field ANAME
is the syrtolic rame to be assigned to the alksclute element
by the lcader. The field CUTIU is an integer specifying the
I/C unit cr which the aksclute element is to ke stored. The
field INU is an integer srecifying the I/C unit on which the
user input dis stcred. The field 1IB1 is an integer
srecifying the I/C wunit c¢n which the 1library index is
stcred. The field Ck 1is a logical flaq (values true cr
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(a) $ABSLTb ANAME,OUTU,INU,LIB1,0K

ANAME the symbolic name to be assigned the

absolute element

OUTU the unit on which the absolute element
is to be placed ‘

INU the unit where the input stream is to
be found
LIB1 the unit upon which the library index

is to be found

OK a switch that indicates that processing
should or should not proceed if an error

condition occurs

(b) $SEGbbb SNAME (PRED, , PREDZ{ . e ,PREDn)

SNAME the symbolic name of the segment of elements
which follows this control card

PREDi the symbolic name of one of n segments which

must physically precede this segment in core.

Figure 2 The symbolic control records $ABSLT and $SEG
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false) that specifies the errcr action tc be taker if a ncn-
fatal errcr cccuis. Any cr all of the fields may ke
critted. In this case the loader assigns standard values to

e€ach.

The ccntrcl record $SEG, shown in Figure 2(t), is a
syntclic record that is used to define the teginning of a
Frcgram segment. As mentioned before, a program segment is
a set of sutkprceorars ard ccomcn areas and is defined only
when memory overlay is desired. In the case cf memory
overlay, a segment®s lccaticn is defined Ly the lccaticn cf
the segments‘ thét must “ CCCUpy core simultaneocusly.
Therefcre, the fcrmat of the $SEG control record is a field
SNAYE that is the wunique symtolic name assigned to the
segeent and a list of symkolic nanmes (ERED?, PRELZ, =~ =+ =
¢ EFELCN), enclcsed in parentheses, of the n segments that
gay CCCUfy ccre simulténeously with segment SNAME and that
imrediately  precede the segment SNAME in  the overlay
striucture being defined. This form of overlay descrigpticn
is forrowed frcr the UNIVAC Ccllector [7].

As menticned, the result of assemblying an assemltly
lencuage sulkprccram cr ccmpiling a procedural 1languagse
sukprogranm is a'telocatahle element. A relccatable element
is the intermediate fcrm.cf a suhpiogram iﬁ its translaticn
tc executakle fcrr. The relccatatle element is identified
ty the «ccrtrcl record $RELOC . This ccntrol reccrd,“éhdﬂn
in Figure 3(a);‘ccnsists of three words. The first word is
the ccntrcl swcrd $BEiOC ,. the second word is the syrtolic
name assigned tc the element, and the third word, in tuo
fields, indicates (1) whether cr nct this prcgram is a main
prograr (if so, this field is alsc the relative address cf
the main entry point), and (2) the number of words that this

sukprcgrar will require ir memcry.

The relocatakle element consists of +twc parts, {a)
relccatakle <c¢cde and (k) =yrkclic address takles. The
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(a) $RELOC

symbolic name of element

main program words required
indicator in memory
(b) |$UND
number of
entries
undefined .
symbol symbolic name of undefined
entry address
(e) $DEF
number of
entries

]

symbolic name of defined address

defined

symbol contents of that address
entry

subprogram
relative address

Figure 3 The Relocatable Element
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common area
entry

(e)

complex
calculation
entry

(£)

$COMN

number of
entries

symbolic name of common area

block size subprogram
relative address

$CMPLX
number of table length
entries in words

1 TL INDEX « e s e e

. OPC | TI INDEX

6 {0 INDEX

$TEXT

string of relocatable words ending in

a text end word

Figure 3 (continued)

29
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relccatakle code is the interrediate form c¢f the wmachine
larcuage instructions and data that results from the
translaticn of an assembly 1language subprogram cr of a
rrccedural language subprogram. The relocatatle ccde is
ccntained in $1EX¥T control records. The symtolic address
takles are identified Ly four control ﬁords, $UND, $DEF,
$CCF¥N, and $CHMELX.

The $TEIT control word identifies a contrecl record
containing relccatable code (Fiqure 3{f)). A machine
language instructicn is usually made up of a pcn-address
part (e.g., the <c¢p-ccde part) and an address part. Since
relocatakle translaticn requires cnly the adjustment of
addresses, 1t is cnly necessary tc distinguish between the
address part and the non-address part of the instructions.
Therefcre, a relccatakle ccde consists of a sequence of
relccatable +wcrds. Each relocatable word cortains an
address part c¢r a non-address part of an instructicn. 1In
this context, a data word can te viewed as an instructicn
withcut an address part. Figure 4 shows the six formats
{called A,BE,C,L,E, and F) ¢f the relocatable vwcrds. Each
format has up to five fields: CP, FS, II, FLD, and INC. The
FITL field <ccrtairs data, or the address part cf an
ipstructicn, cr an index to a takle. The FS field contains
the length cf the FLD field in Lytes (for ccnvenience, a
tyte is defined here as 9 bits). The OP field identifies
tke FLD field as:

(a) Lata (CE=1).

(b) Felative_address (OP=2). This address references

8 location within the subprogram relative to the
subrrecgran address. The FLD field contains a
relative address.

(c) Cempcn_address (CP=3). This address references a

data area which is ccmmon to several sukprcgrams.
The FLD field ccntains an index to the ccmmcn area
list.



Figure 4 Relocatable Word Formats

OP FS IL FLD
length of \Q data part of
1 FLD field \ instruction
(in bytes) \ or data word

3 % 2 9kEs)

bits
(a) Format A, indicating data
opP FS I1 __FLD .
length of \\* address relative
2 FLD field to the subprogram
(in bytes) \\ ‘
—3 % 2 9*(FS) bits
(b) Format B, indicating relative address
oP FS 11 FLD _ING
length of incre—~| index to address possible |
3 FLD field ment | in Common Symbol increment or :
(in bytes) ind. Table decrement |
- 2 GR(FS) —— —— 9%(FS)
(¢) Format C, indicating common data address
OP FS II FLD _INc
length of incre-| index to address possible !
4 FLD field ment | in Undefined increment or |
(in bytes) ind. | Symbol Table decrement |
V2 9%(FS) 9¥(FS)
(d) Format D, indicating external address
OP FS 11 FLD mwe_
length of inc. index to possible {
5 FLD field ind. complex inc. or )
(in bytes) address decrement |
— % 9%(¥s) O*(FS
(e) TFormat E, indicating complex address
oP
6
() Format F indicating the end of relocatable code

31
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bits
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(d) External_ address (OP=4). This address references

e e

an entry point in ancther subprcgram. The FID
field ccntains an index tc the undefined symbol
list. |

(e) ccmrlex_address (CP=5). This address is an
arithmetic ccpkinaticn <cf external, ccmmcn, or
cther ccrplex addresses. The FLD field contains
an index tc the complex address list.

(f)  Epd_cf_relocatakle code (0P=6).

The akcve ccrplex address, common address and external
address words reference lccaticns outside cf the sukprogram.
These addresses are symtkolic and are stored in the symbkolic
address takles tc le descriked suksequently. The II and INC
fields are prcvided to give a numerical increment to these
syrtolic addresses. If 11 is equal to 1 or 2, the address
is incremented or decremented, respectively, by the contents
of INC. If II is equal tc O, there is no INC field.

Figure S5 (a) shows an example of a relccatatle code
wvhere the fields are =serarated by vertical lines and the
nunmters of octal. weords 1,2,3,5,7,9,11,13, and 1% are
relccatakle wcrds with data. Words 6,8,12,14, and 16 are
those with relative addresses (0P=2). Word 17 is one with a
copmcn address (CP=3). Words 4,10, and 1€ are thcse with
external addresses (OP=4). Word 19 is the cne indicating
the end c¢f the relocatable code ({OP=6). There are no
ccrplex addresses 1in this example. Note that the
relccatable wcrds in Fiqure S(a) are of different lengths.
Though they are shewn as left-justified, they are actually a
string of kytes as shcun in Figure S(b). It is in the
format cf Figure t(k) that the relccatakle words are stored
ir the menmcry.

Symkclic address tatles of a relccatable element
contain all the syskolic addresses that are required to link
sukfrcgrars tcgether and those address calculaticns that
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word

M N0 0O

10
11
12
13
14
15
16
17

18
19

000005

OO O0O000O0OO0OrHOOoONO
COO0OO0O0OO0O0OO0O0COOO0O0O0O
FTOOOHOTOOOOOIFTOO
~FM~NOooooOM~MNOOOOOMNMNOO
CoO0COoOWOOOO0OOoOMOM~MRODO
OFTOOOOOOTOOOOOFN

120/200400000000
120|1200400000000

eNoNoeNoRoNoNoNoNeNeNoNo ool
o B e e B B B B B I e I I I o I I ]
TN N~ FrHNANHNM

)
=

600 .
TN e~

41030000 2

=%
(=]

oconNHOoOOCOCOCODOONINONO
coocoHvworoo-N~NOOOO®
OFTOONOOTOONODOOOO
CO0ODO0OO0O0DDODO0OO0QOOQ
ocomMOoOMOOHOOHOOOO
SN TO A OO T OMO
OO0 ONOOO0OOOOOO
cNoOoroorHoo-mMmMo-Ho O
N O TOONOONOONANTO
OCoooco0o0DOoOOCOOOCOOHAIND
NoOoOOrmMOOHOOHOOHOO
- OO FT~O ™M ITONOTNOW

(octal)

1‘0
1.0

in relocatable words
A PZE
PZE

(a)

3
v
(&}
o
[
z)
< < 5%
. b
B ¢« <« & m < B2 @&
MNoE O M O m 1 T o]
o N g 8 8 2HE

MAIN
NEXT

(octal)

as a series of memory words

(b)

Figure 5 Ekample of a relocatable text
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derend urcn addresses that are unknown to the assenskler cr
compiler. There are four symbclic address takles:

(a) The_undefined_symbol list (Figure 3(l)). This is.

- —— - iy . — i, Wt ol < A D S I S s o

cne cr mcre ccrtrcl records ccontaining the contrel wecrd $UND
in the first wcrd, the nurber c¢f entries in the second word,
and follcwed Lty a list cf symbclic addresses that swere not
resolved ty the assembkler cr ccepiler and therefore assumed
tc ke external tc the subprcgram. There is ome symbolic
address tc the wcrd.

(b) The defined symkcocl list (Fiqure 3(c)). This is cne

or more ccntrcl records cecntaining the contrcl word $DEF in
the first wcrd, the numker of entries in the seccnd word,
and follcwed by a 1list of symkolic addresses from the
subfrogram that are typed global by the assemliler cr
ccrpiler. 1These are the addresses that will correspond vith
undefined symbcl ertries in other relocatalle elements.
Fach entry consists of three wcrds, the symbclic name of the
address, the ccntents of the word at that address if it is
data (zerc otherwise), and the subprcgram zelative'addtess
corresponding tc the symkclic address.

{c) lhe_commcn_area_list (Figure 3(d)). This is crpe or
rcre contrcl records ccntaining the control word $COMN in
the first word, the number cf entries in the second word,
and then a 1list ¢f entries representing ccerecn areas
specified in the sukprcgram. Each ertry in the 1list
consists c¢f twc words, the first of which ccrtains the
syetclic name cf the ccmmcn area. If the subprocgram defines
the ccntents cf the ccmmen area, the second word cortains a
zerc first half and the subprogram relative address c¢f tte
ccugon area in the second half. If the subprogram does not
contain the ccmmcn area, the second half of the seccnd wcerd
is =zero, and the first half contains the nuaber ¢f words

specified for the ccmmcn area ky the subpregrar.
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(d) 1he ccmplex address list (Figure 3(e)). This is
cre cr rore ccntrecl records specifying a nuster cf
arithmetic creraticns tc ke made ktetween glotal addresses,
comron areé addresses, frrevicus complex addresses, cr tthe
contents ¢f glcktsl addresses. The first wcrd <ccrtains the
control wcrd $CEEIX; +the first half of the seccnd wcrd
contains the numker cf complex addresses calculated in the
takle:; and +the secend half c¢f the seccnd werd ccrtains the
rurkter cf words in the takle c¢f cocrplex calculaticns that
fcllcw. The fcllcwing 1list of words contairs a string cf
half-wcrd instructions for each address to ke computed. If
there is mcre than cne $CMEIX control record, only the first
reccrd specifies thke number of complex addresses (the first
half cf wcerd twe).

Figure 6 shcws the fcrmat of the complex calculaticn
word. The field CEC indicates cne of six cperaticns: load,
add, suktract, multiply, divide, and store (all aritheetic
is integer). The field 11 indicates cne cf five scurces cf
crerands: the undefined <symbol 1list tc obtain a glokal
address {(1I=1) or the <contents at a global address
{11=2) ,the ccrmcn area list to oktain a common area address
{11=3), the <ccrplex address list to oktain the result of a
Frevious ccmplex calculaticn {TI=4), cr the value of the
field INTEX (T1I=5). The field INDEX is used tc index the
specified takle cr as thke cperand.

Examples cf relocatakle elements appear in Figures 7,
g, and ¢S. Figure 7 shcws a relccatakle element that has
four ccntrol reccrds. The $BRELOC ccntrcl reccrd shcws that
the =sukprcqgrar hes symkclic rame MAIN, that it is the main
sukprograr, and that it requires 10 words cf @memcry in
executatle fcrm. The $UND ccntrol record shcuws that there
‘are three undefired syrkols SIN, C0S, and SUBEK. The $CCHMN
ccntrcl 1reccrd shecws that there is cre ccmmon area BILICCK

referenced in the subprogram and that it requires 8 words.
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Complex calculation words

;a) load instruction (begin calculation)

oPC T1 INDEX
table index to table indicated
1 indi- by TI field
' cator
Sl v = —
3 3 12 bits

{b) add instruction

OPC TI INDEX
table index to table indicated
2 indi- by TI field
___| cator _
Nty "
3 3 12 bits

(¢) subtract instruction

OPC TL INDEX
table index to table indicated
3 indi- by TI field
cator
3 1 bits

(d) multiply instruction

OPC TL INDEX
table index to table indicated
4 indi- by TI field
cator
3 3 12 bits
(e) divide instruction
OPC TL INDEX .
table index to table indicated
5 indi- by TI field
cator
==
3 3 17 bits
' Table indicator values
£) i :
(f) store instruction (end calculation) I | mdefined symbol list- address
OPC TI INDEX 2 | undefined symbol list- value
6 0 index to complex I3 | common symbol list
address table 4 | complex address list
3 — 1y . |value of INDEX field

Figure 6
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S I N b b b
C 0 S b b b
S U B R b b
$. ¢ 0 M N b
1
B L ¢ C K b
10, 0

Figure 7 Example of user input
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00

L O
R T
0,

D b
b b
b b
T N
F b
T N
0077

R b
M N
C K
2,
P L»
2,
2,3,1,
0,1,2,
1,6,0,
X T

Figure 8

Example of library subroutines




R E 0 ¢C
I N ®» S
0, 50
D E b b
2
¢ s b b
0
0
I N b b
0
5
T E T b
Figure 9 Example of Library Subroutine

(SINCOS)
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The $TEXT ccntrcl record contains a 16 word string cf
relccatatle ccde. Figure 8 <shcws a relocatable element
compcsed c¢f six ccntrcl records. The subrrcgrar name is
SUEEIN. There are ttree undefined addresses referenced
witkir it, SIN, <COS and CNSINT. There are twc glckal
addresses withkin it, CNSTNT and SUBR, and one ccmepcn area ,
BICCK, is referenced. In addition, there 1is a complex
calculaticr cocrtrcl reccrd $CPEIX. This indicates that the
ccrputaticns fcr twc complex addresses are contained in the
following three wcrds cf half-word instructions. The first
kalf-werd instruction has CEC=1, TI=2, ard INDEX =2z. This
translates (tky the format in Figure 6) to *flcad the value
of the symkclic address that is the third entry in the
vndefined symkcl list (the index kegins at zerc)'!' cr !''load
the ccntents cf the word at symbolic address CNSTNT.'!

There are twc sources cf input tc the lcader, the user
and the 1library. The user input tc the lcader is composed
cf the $ABSIT ccntrel record, followed Lty a set cf
relccatable elements. Figure 7 is a one element exanple cf
this. If memcry cverlay is desired, the set ¢f relccatatle
€lements ray be brcken into sulbsets by $SEG contrcl records.
In this case, the overlay structure is specified Lty the list
of rpredecessor segments, as nmentioned befcre. Figure 10
shows a list of $SEC ccrtrcl records that define the overlay
‘structure diagrammed in Figure 1{c). It is impcrtant to
realize that, althcugh each segment lists only the segments
that iprediately ©precede it in the structure, the overlay
structure is ccrpletely defined. For example, segment J
lists <seqgments G, I, and D as immediate predecessors.
Hcwever, e€each ¢f these in turn lists its predecessors, and
sc c¢n, ufp tc segment EAIK which is the main (cr root)
segrent (i.e., it has nc predecessors). It should alsoc te
reccgnized that the crder ir which prcgram segments are
input is not specified. The 1lcader performs its own
crdering internally.
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The cther scurce of input is the subprcgrasm 1library.
I1f, after all c¢f the user subprcgrams are input from I/C
unit INU, scme external addresses are as yet undefined, an
attenpt tc made tc resclve these in the subprcgrar litrary.
This library is accessed Lty searching an index of symktclic
cglcktal addresses that have been culled from the sulprcgram
likrary. 1This index exists as a chain c¢f cne or more
records or 1I/C unit LIR1.

Figure 11 shcws the fcrmat of the library index tatle.
Each reccrd rerpresents a tatle. The symkelic glokal
addresses are crdered lexiccqgrarhically by name. Each takle
is headed ky four words that give the lower and urrer tcunds
cf glcktal addresses cortained in the takle, the mass storage
lccaticn c¢f the rext likrary index (if any), anrd the numker
¢f entries in the takle. The entries are ccmposed of two
wcrds: the first is the symkolic glokal address; and the
seccnd is the mass stcrage location where the relccatable
€lenent which ccntains it can te found. Figure 12 shows an
exanrple cf a library index takle. The 1lower and upper
Ecurds {0 and 777777777777') show that this index contains
all symbclic addresses in the litrary. These include glotal
addresses CNSINT, CCS, SIN, and SUBEK. These addresses
reside in the relccatakle elerents at mass stcrage lccaticns

LIEICY, LIELC2, 11E1C2, and LIBLC1, respectively.

3.1.3 Compariscn_With Existing lcader Input

The chief differences between the input specificaticn
given akcve and that cf existing lcaders are in the foreat
cf the relccatakle code, the structure of the undefined
symkol takle, and the 1likrary index. For irstance, the
definition cf the relccatahle'ucrd given akbcve is wunique.
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lower bound of entry point names
in the table

upper. bound of entry point names
in the table

mass storage location of the next
library table

number of entries in this table

)

symbolic entry point name ; library table enfry

mass storage location of subprogram
in which the entry point occurs

Figure 11 Library Index
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Figure 12

0
777777777777
0

4

Example of a Library Index
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The traditicnal methcd cf relccatakle codirg is tc rrcvide a
tatle cf descriptcis, each descriking the relccaticn ¢f one
cr rore wcrds <¢f the program text. For example, the IEHM
7C0¢C,7094 lcader packs seven five-bit descriptors intc cne
3€-tit word to descrike the relccaticn cf seven words. Each
five-bit descriptcr sgpecifies the relocation required fcr
the two address fields in the IEM instructicn wcrd. The
UNIVAC 110€ relccatakle cutput rocutine (RCB) frcduces a
variable length string cf tinary informaticn that is used to
telccate cne c¢r mcre instructicn words that fcllew it.

The second point cf ccmrarison is the undefined symkol
takle. 3 nuplter cf operating systems employ corpilers and
asserklers that rfperfcrm all inter-sukgrogram Jumps by
trarching tc a single location within the subprcgram (called
the transfer vectcr) that contains the address o¢f the
desired =subkrrcgranm. Therefore, their 1lcaders contain no
inter-sukprcgram transfers from within the text; instead,
they translate the undefined syskol takle into a transfer
vector tatle. As the lcader descriked herein cculd make no
such assumpticns akcut the compiler, this fcrmat cculd not
bte adopted (ncte, hcwever, that this does not fpreclude the
possibility of such a table).

Ancther lcader, that of the CDC €6CC, structures the
links to the undefined syrbol taltle in reverse [9]. 1Instead
cf each external reference pointing to the undefined symlol
takle, the table ccntains a pointer to the first address
field that references it, that éddress field ccntains a
pointer to the =seccnd, and so c¢n, with the last address
field ccntaining an end-of-chain marker. In this manner,
inter-subrrcgrar addresses are easily located.

Thte third point of comparison is the library index. It
is used chiefly tecause it is a simple implementation, while
a numrber cf 1lcaders provide moltiple-~likrary search
procedures with ccrplex ccmmand languages. To include such
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procedures would require detailed descripticn cof file
systems, which is cutside the province of this parer.

The atsclute element is the form that the user program
takes in crder tc exist outside cf mescry. It is structured
to ke easily lcaded into memory for execution. It consists
cf a resident patt that is lcaded initially and remains in
memory thrcughout execution, and, if necessary, a series of
non-resident Gfarts that are loaded during execution as
required. The alqcrithm assumes that there 1is a standard
system I/C unit for temporary storage of the ncn-resident
segrents.

The resident pertion consists of the main éeglent. all
coppon areas, the vseglent.blcading routine ($LINKS), the
linkage takle, and the 'segnent taktle. The ncn-resident
pcrtion ccnsists cf all overlay segments. -

In crder to facilitate 1loading of the prcgram, the
aksclute [preograr is blocked into logical blocks. A logical
tlcck represents one overlay segment or the resident
pcrtion. It is assumed that the absolute element is to te
stored lineally‘cn pass stocrage as a series c¢f reccrds..
Each lecgical kleck is compcéed cf a series c¢f reccrds. Each
record represents a contiguous piece of nmermcry. Hovwever,
the reccrds need nct ke ordered ty mesory leccation.

The prcklem cf orienting ir memory a set <¢f records
representing a .ncn-contiguous set of ®emory blccks is met by
the methed cf scatter loading. At the hegjnning of each

teccrd AJt contigucus pénory lccaticns is the ad@qug of the
first locaticn. Loading Lecomes a simple process of
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interpreting the address and transmitting the fcllowing
tlcck of wcrds tc that location and leccaticns fcllcwing.

The structure of the atsclute element 1is shown in
Figqure 13. Heavy lines separate the lcgical blccks. The
header blcck identifies the altsoclute element, the overlay
csegrents fcllcw it, and the resident portion cf the program

completes the absclute element.

The header tlcck differs from all the other recerds in
that it 1is rct a tpart cf the tfrogram. It rprovides
infcrmaticn to the memory lcad routine. Figure 14(a) =shous
the format cf the header klcck. The first wcrd ccrtains the
syekclic rare cf the aksclute elerent. The second wcrd
ccntains the <cverlay indicator and the main segment flag.
1f the cverlay indicator is non-zero, overlay segrents will
fcllecw the header block. The third word gives the address
cf and the number cf words in the undefined comron areas.
The last word gives the absolute address c¢f the prcgram tc
which ccntrcl is tc be transfered once the resident part c¢f
the rrogram is lcaded (i.e., the starting address).

Each record cf executable code appears as in Figure
14(k). Tlre first wcrd contains the segment indicator in the
first half and the address at which the klock cf executatle
code is tc be lcaded in the second half. The segment
indicator is a flag that is zerc for non-resident porticns
cf the program and non-zero fcr the resident pcrticn of the
ptogtam.

The cverlay linkage takle and the segment takle are
skewr  in Figures 1U{c) and 1i4{d). The structuzre cf the
first word is the same as above except that toth bhave non-
zerc flag f£ields because they are always part of the
resident pecrticn cf the program. The overlay segment ‘takble
ccnegists cf a txc-gord entry for each global address in @&

non-residert =segment that is referenced from ancther
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header block

overlay segment 1

overlay segment 2

overlay segment k

main segment

linkage table

Figure 13

The Struéture of the Absolute Element

non-resident portion

of program

resident portion

of program
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-segrent., The =segment talble contains a one-word entry for
€eact ncon-resident segment, indicating the 1locaticn of the
segrent in the &ksclute element ard number c¢f records
required fcr the segment. |

The 1lcading cf the absolute e€lement 1is Ttelatively
simple. The header record identifies the locaticn cf the
undefined ccmmcn areas and the numker cf locaticns tc ke set
tc zerc. Ther the following cverlay segment reccrds, those
with a 2zerc flag field, are transfered to the tempcréry
stcrage srecified bty the system. Cnce the main segment flag
is ercountered, the reccrds are scatter loaded intc ccre.

An example cf the absclute element is shown in Figure
1€. The alksclute elerent SAKELE has a 108 vord ccmmcn area
reginning at 1000;. The startipg address is 101”8. There
are no cverlay segments, Ltkut the wmain =segement flag
‘5555558) is shown anyvay. There are three reccrds cf '123,
2008' and S0y vwcrds. The reccrds are tc be lcaded at
lcca

tions 10128, 10244, and 12243, respectively.
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12 words 060100001012

200 words

555555001224

50 words

. Figure 15 Example of an

Absolute Element
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The algcrithm fcr the loader consists of three phases.
In the first phase, all user relocatakble elebents are input
along with any segment ccntrocl reccrds. The data structures
representing the input are ccnstructed, including lists cf
refererced glctal addresses and a table of defined glokal
addresses. The <csubprogram library is searched to find any
glctal addresses that are referenced bkut are nct defined in
the user input. The library subprograms necessary to
complete the prcgram are input and added tc the tatles.
Throughout the first phase, the relocatable ccde is stored
cr rass stcrage.

In the =second phase, the CORmON are€as and the
sukprograms cf each segment are allccated aksoclute pemory
addresses (termed the §g§3;ggggg~__gg§;g§§1; Once a
sukprogram has Lkeen allccated its subprcgras address, the
¢lctal addresses ¥ithin it are assigned absolute addresses.
When the memcry allocation is complete, the ccmélex
addresses are calculated..

In the third phase the relocatakle ccde is input from
rass stocrage a record at a time and translated to executatle
ccde. The subprogram relative addresses are added tc the
sukprogram address, each external reference to a glotal
address is rerlaced withk the aktsclute address assigned to
the glokal address, the references ¢tc ccmmch areas are
replaced‘with the aksolute addresses assigned tc the ccmmon
areas, and each reference to a complex address is rerlaced
witk the value o¢f that complex address. All address
references between segments are made through a linkage tatle
constructed in this phase. The executable code is formed as
scatter-lcad reccrds and placed on the output unit.
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The algcrithm is descrited in detail in the sutsequent
sections. These =secticrs descrite the data structuzes
necessary to represent the informaticr in memcry, the
characteristics c¢f the necessary irput/cutput rcutines, and
the three rtases cf +the algorithr. The design cf the
alccrithw, includirng input, cutput, and data structures, is
rased upcn existing lcaders [U4] [S5][7] and the descripticn
¢f lcaders fcurd ir the literature [10] [11] [12] [13].

This secticn rresents the data structures that are used
sithir the 1lcader tc store the data and to provide the
€easiest access to it for all the functions of the 1locader.
Cnce the =structures have been detailed, some alternatives
" will be ccnsidered briefly. It is assumed that the reader
is familiar with data structures such as a gqueue, a
sequential list, 2rd @ linked list (e.g., as descrited in
Knuth [147). Hcwever, a few lkasic defiriticrs are in
crder. The infcrmation in a data structure ccnsists of a
se€t cf ncdes. A ncde will alsc ke called an ertry, cell, cr

a descriptor. Each node ccnsists of cne ¢r mecre ccnsecutive

words of mewory. The address c¢f a ncde is the memory
location of its first werd and is alsc referred tc as a

Fcirtexr, 1link, <r reference. A ncde has one cr ecre named

R T N A o e S i

parts called fields

For example, a single werd 1is a node. Within this
paper the fields cf a single werd will be named as shown in
Ficure 16. The full word at address i is rared ¥{i), the
tvc halves are named H1{i) and H2(i), and the quarter words
are nared ¢1(i), 0Q2(i), 03(i), and Qu(i). TWithin the

ccntext o©f this paper each word is assumed to ccntain two
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i-» w(i)
W(i)= contents of the memory word at address i
i H1(D) H2(1)
H1(i)= contents of the first half of the word at i
H2(1i)= contents of the second half of the word at i
7
1= W) 4 a2
% /]
Al(i)= contents of the address portion of the
first half of the word at i
A2(i)= contents of the address portion of the
second half of the word at i
i WMS (1)
SIGN(i) WMS(1i)= contents of the word at i except the
' sign bit
SIGN(i)= contents of the sign bit of the word at i
Q1(1) Q3(1)
—
t 2 R4

- Q1l(i)= contents of the first quarter of the

word at 1

Q2(i)= contents of the second quarter of the

word at 1

Q3(i)= contents of the third quarter of the

word at 1

Q4(i)= contents of the fourth quarter of the

word at 1

Figﬁre 16 Field Descriptions of a Memory Word
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address fields, 21{i) ard A2(i), located in the right  most
part cf each half-wcrd. The left-mcst kit cf each word is
rared SIGK{i), and the remaining portion of the vwcrd is
nared K¥MS(i).

The lcader has the main memory availaktle as a stcrage
area. In additicn, the system provides temporary storage
through the I/C fprccesscr, ‘''secretary'' (SEC), which is
descrited in detail in @a suksequent secticn. The main
mencry is random access wecrd-addressakle, while the
secretary can store a sequential series of variakle length
reccrds at any cne of a large numker cf =symkclic mass
stcrage lccations (i.e., the secretary provides the effect
cf a randcm access mass storage file system whether cne
exists cr nct).

The memcry requirements of the 1loader are of four
tyres: {(a) a fixed number of variables and pointers in three
takles, (k) a set cf exrarding tables, (c) an input lFuffer
area in which tc place input reccrds, and (d) a multi-use
area that can ke used tc store temporary irformation during
the first part cf the algorithe and as an cutput buffer in
the latter part cf the algorithm. Figure 17 shows the basic
fcre cf the reguired memory area. The three takles in the
first secticn contain the pointers and variables, the tatle
descriptors fer all the fellowing tables, and the hash
tatle. The pcinters and variakles will e intrcduced
throughout the algorithr and their specific lccaticn in the
tatle is inccnseguential. The hash table will ke explained
in detail with the defined symbol takle. The takle and
buffer descriptors are introduced in Figure 18. Each
descrirtor consists cf four fields in twvo words C,F,L, and
K. Each descriptcr is defined by its address. 1In crder to
distinguish the descriptors, abbreviations for the talles
%ill ke used tc rame the descriptor addresses.
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Input

Buffer
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F(OUT) ——»

Output

Buffer
L(OUT) ———

Figure 17
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UsT
CAT table

" o aim ) ama St

AVAIL )
lists
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TBL table area for:

SEG

ENT

DST

UST

ELT

CAT

INP  input buffer

segnent descriptor table

element descriptor table

defined symbol descriptor table

table of unresolved symbols

overlay linkage table

common area table !

i

%
¢

OUT output buffer and temporaryatable area for:

AVAIL

Q

Table Descriptors

table of available Cei;s

library queue

ek

For each of the above tables and buffers there 1s :a two word
descriptor of the following format: §

Figure 18

}
H
address of the current entry in the

table or buffer Lh

address of the first @ntry in the

table or buffer

address of the last en%ry in the

table or buffer

number or entries in the table or buffer
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The expanding takles are placed in the area cf wmemcry
defined by the F and L fields cf the TBL descriptor. W®ithin
this area are the segment descriptor table (SEG), the
elenent descriptecr table (ENT), the defined syrbcl taltle
{(CS1), the table cf unresolved symbcls (UST), the overlay
linkage table (E17), and the common area talkle (CAT). Each
of these takles hes a descriptecr. The limits cf the input
tuffer and thke «cutput Lkuffer are defined by the F and L
fields of the INP descrigptor and OUT descrigtor,
respectively. Within the cutput tuffer area are twc tatles,
a tabtle of availakle twc-word cells (AVAIL) and a gqueue of
required library ssbprograms (C).

The philcscphy of the algcrithe presented is tc form a
data structure in memory that represents the nmemory
allccaticr cf the program. Once this structure is complete,
tten the translaticn of relocatalble code tc executakle ccde
can te perfermed. This requires that all user input and
likrary input te represented in memory. ‘However, the
relccataktle ccde ( $TEXT ccntrcl records) 1is fplaced con
temporary storage and represented by storéée lccaticn alone.

Each segment is represented ky a segment descriptor.
There is at least cne segment descriptor, vhether or nct
$SﬁG ccrtrcl reccrds are input. The fields are defined
specifically in Figure 19. Hovever, several fields serve
dual furncticns and are therefore assigned two names.  For
example, for a segment descriptor located at address'i,
H1(i+1) is named TCPF (i) and AALE (i), and H1(i#+4) is named
EIC (i) while Q1(i+4) and Q2(i+l4) represent the same field
and are named CCUNT (i) ard MREL (i). Segment. desctiptors
are linked tcge{her ty the KRXTISEC field ir the crdérvthey
were input and ty the NSEG field in the crder that they are
to ke output. 'In addition, each segment pcirts tc the
teginnirgq and e€rd c¢f a chain c¢f element descriptors
{(rerresenting the subprograms that bkelong to it) through the
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STOP (1)

SBOT(1)

SEGN(1)

TOP (1)
AADR(1)

NXTSEQ(1)
HADR(1)

IR BLC?;i)\

NSEG(1)

OUTLOC(1) )
relation 1

relation MREL({1) y

—— COUNT(1)

{——— MREL (1)

i)

suc(1i)

NXT(1)

Figure 19

relation 2 gsegment:

relation
words

STOP (1)

address of the descriptor for the first element
in the segment

SBOT(1) address of the descriptor for the last element
in the segment

SEGN (1) symbolic name of the segment

TOP (1) address field used in the ordering of the
segment descriptors

AADR(1) absolute address assigned to the first element
in the segment

HADR(1) absolute address of the first word following the
segment

NXTSEQ(1) address of the descriptor for the segment

NSEG(1) following the segment, order input (NXTSEQ)

order processed (NSEG)

COUNT(1) number of direct predecessor segments for the
segment

MREL (1) number of segment relation words

BLC(1) number or records required to store the executable
code for the segment

OUTLOC(1) location of the first record of executable code
for the segment

Suc(i) address of the segment that represents the next
in the chain of successor segments for the segment

NXT(i) address of the next relation word

Segment Descriptor

69
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SICE and £ECT fields. The list of segment relaticn wcrds at
the end cf the segment descripter are used to represent the
rredecesscrs listed on the $SEG contrel record.

Each sutﬁrcgtam is regresented by an element
descriptor.  Fach element descriptcr consists cf an eight
word hlock'follcved ky three lists: the ccmmcr symkcl 1list,
the wundefined synkel 1list, and the corplex address list.
Ficure 20 descrites the descriptor and shows hcw the main
Elcck rpecirnts tc  the three lists through the CSsI, TSI, anq
CAl fields. Each element descriptor is linked to the next
element descriptcr in the segmwent chain by the next field.
The SEGE field cf the element descriptor ‘pcinfs tec the
segment descriptcr tc which it belongs, and the ISL field
points to a chair cf glokal syerkcls that cccur +withir the
sukrrogram.

The commcn area descripter is shown ir Figure 21.
There 1is cne twc-word descriptcr -fcr each ccmron area. The-
ccercn area descriptors are stored sequentially from L (TEI)
tcward F(TEI). '

The defined symbcl descriptor is shown ir Figure 22.
There is cne five-word descriptor for each gloktal address
specifijed in a relccatatle address. Each descriptor pcints
tc the element descriptor and the segment descriptor in
which the glcbal address occurs through the FLTA and SEGD
fields, respectively. Defined symbol decrigptcrs of one
sukprogram are linked to each cther bylfie ELTL field. In
addition, it is necessary that all defined symbols exist in
cpe takle. As this takle is searched for specific symkolic
addresses rmany times, it is best if the search takes as
little time as possible. For this purpose, hash-coding is
used. The F(DS1) field contains the address cf a talle cf
addresses. A furction f£(s), that uniformally “distritutes
the set of all symkolic names s, is used tc select cne cf
the takle lccaticns, x {x4- F(DST) + £(s)). This is .called



address of the segment descriptor
address of the next element descriptor
symbolic name of the element

number of records of relocatable code on
temporary storage

number of different common areas
referenced in the subprogram

address of the common symbol 1list for
the element

number of different external references

address of the undefined symbol list
for the element

number of complex addresses in the
subprogram

address of the complex address list for
the element

number of glokal addresses in the
subprogram

address of the chain of defined symbol
descriptors for the element

number of words required for the
executable code of the subprogram

absolute address assigned to the subprogram

mass storage location of the relocatable
code

{——3 SEGE(L) NEXT (1) SEGE(1)
ELN(i) NEXT(41)
NB (1) {NC(1) CSL(1) ELN(1)
NU(i) USL (1) NB(1)
NCA(1) CAL(1) _
NC(1)
ND(4i) DSL (i)
SIZEL(1) ABSLOC(1) CSL(1)
MASLOC(41)
NU(i)
USL(4)
. ' common symbol NCA(1)
pointer to common 1list
area descriptor
(NC(1) entries) CAL(1)
ND(1i)
—f :
symbolic address undefined symbol DSL(1)
or pointer list
. (NU(1i) entries)
. SIZEL({)
31 pointer to complex complex address
calculation table list ABSLOC(1)
(NCA(i) entries) MASLOC(1)
complex calculation
table
Figure 20

Element Descriptor

. 19
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i —> coMs (1)
MSIZ(i) CABSLC(i)

CcoMs (i) symbolic name of the common
area

MSIZ(i) number of words in the common
area

CABSLC(i) | absolute location assigned to
the common area

Figure 21

Common Area Descriptor




i——>{ UL(i) FL(1)
DEFS (1)
VALUE (i)
; ELTA(1)
L1(1)—f] RELAD(D) LKADR(1)
UI(i)*’)’ SEGD(l) ELTL (i)
UL(1) ‘ address of the next defined symbol in the unresolved
symbol table, or
address of the next defined symbol in the overlay
linkage table
FL(1) address of the next defined symbol in the defined
symbol table
DEFS (i) symbolic name of the defined symbol
VALUE(i) | contents of the word corresponding to the defined
symbol
LI(4) library indicator bit
RELAD(i) { relative address of the defined symbol in the
subprogram in which it is defined
SEGD(i) | address of the segment descriptor of the segment
] in which the defined symbol occurs
ELTL(1) address of the next defined symbol in the defined
symbol list of the element. descriptor corresponding
to the subprogram which contains the defined symbol
UI(4) indicates whether or not the defined symbol has been
resolved
ELTA(4) address of element descriptor that corresponds
to the subprogram that contains the defined symbol

Figure 22 Defined Symboi Descriptor
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hash-coding and is further exrlained kelow. The chain cf
defined syrkcl descriptors pointed to by x cortair sysbkolic
raxes that fprcduce the same value of x and are linked
tcgether by the FI field c¢f each descriptor. Therefore,
searching the defined symbol table for the descriptor with
the same name, s, is just a matter of searching the sulset
of defined syrkcls that the functicn maps s intc. Defined
symkol descriptcrs are alsc placed into the takle when no
€lerent has yet keen found that contains them. 1In this case
they are alsoc linked to a chain of descriptors called the
takle <¢f vunresclved symbols. This table is pointed‘tc by
the UST table descriptcr.

Fiqure 23 shcus the format of the library gueue entry.
This is a twc-wcrd entry that is used to represent each
library subprcgrar that must bke input tc complete the
program. The gueve is pointed to by the ¢ table descriptor.
The LIELCC field ccntains the mass stcrage lccaticn for the
relccatakle elemert ccntaining the sukprcgram. The ESEG
field contains the address c¢f the segment descriptor to
which the subprcgram’s element descriptor is tc be attached.
The gqueue cf library entries are 1linked together by the
FEX1C field. The library queue is a chain of entries that
varies in length. A chair of available erntries 1is pcinted
to ky the AVAIL takle descriptor. These entries (shéwn in
Figure 24) are linked together ky the LINK field. 3 a new
entry is needed, ore is detached frcm the chain of available
entries ard attached to the queue. Once an entry has
fulfilled its usefulness, it is returned to the chain.

Some of the inter-relaticonships ketvween the descripter
tatles are <shesn in Figure 2€. The segment descriptors
arpear in the left-most column and are linked together via
the NSEG fields. Each segment descriptorépoints tc a chain
cf element descrirtcrs in the center  column. These
descriptors are linked tcgether withir the chain. Each
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LIBLOC(1)

ESEG(1i) NXTQ(i)

LIBLOC(1i)

ESEG(1i)

NXTQ(i)

mass storage location of
the library subprogram

address of the segment
descriptor which corresponds
to the segment to which the
subprogram belongs

address of the next
1ibrary queue entry

Figure 23 Library Queue Entry

LINK(1)

LINK(1)

address of the next cell
in the chain of available
cells

Figure 24 Chain of Available Cells Entry
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element descrirtor contains pcinters tc fcur syrkol lists
fcr that element: the ‘undefired symkecl list, the defined
syntcl‘list, the ccmmon symbol list, and the complex address
list. A11 except the - defined symbol 1list are stored
sequentially. The defired symtol 1list for each element
consists c¢f @& series ¢f chairs of defined symktcls that are
referenced tkrcugh a hash takle. This exémple does nct shcw
all the pcssilkle relaticpships due tc the ccrplexity of the
resvlting diagrams. Fer example,4 each elerernt bdesétiptcr
Fcirts back tc its corresponding segment descriptor. Fcr
this reasch the examrles presehtgd in the fdllcqicg cecticns
will 'instead shcw a ''snapshot’?! of mé#cry,_wifh-the actual

addresses given.

Several ccnditicns led tc the data structure described
atcve, First, the numbter of descriptors of any cne type is
n¢t kncwn a priori. Ey allowing all the tatles tc ~ exist
within the sare area, maximum use is made of availalle space
without the kcther cf repcsiticning ‘takles. Seccrd, certain
descriptors - bhad - tc -exist withir several tables. Fcr
exawple, the defired symkecl descripter entry is 1linked ‘tc
the defined symkcl takle d@nd tc the defired -symbcl list for
tte elemert in which it cccured, and possikly tc theé TST ‘cr
EL1T chains. Third, both the segment descriptor takle and
the ' element descriptcrs recuire re-ordering. With
sequential 1lists re-ordering 1is difficult but with linked

3

lists it is relatively easy.

In regard tc the defined syrkol tabie;-it is wcrthwile
tec diécuss alternative wmethcds «cf dtganizaficn. The
algorithm requires that the talle he'éearched freguerntly and
that additions e made to the takle wher any search is

unsuccessful. The solutions considered were:
I

(a) linear_search . 1ink all symtols tocgether in a
linear 1list.
() Eipary _search . Assign an order tc all symkcls.
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Link 2all symkols tcgether in a kinary tree, where
the left-link always points to a syrkcl c¢f lovwer
crder, - and the right-link alwayé pcints tc a
symbcl cf higher crder.

symkclic npame s, to a table of addresses, where
each address pecirts to a chain of symlcls with
identical values cof f{s).

The first methcd, thke 1linear 1list is the sirmplest
method tc irplewent kut its cperation slcws dcwn~linéar1y
with the nusker cf entries. The seccnd methcd, the Linary
search, cffers the fastest search of a linked list that can
te made. Hcwever, the methcd regdires that the binary tree
teinc searched is talanced. As new entries are attached to
the tree the necessity of rebalancing arises. As the 1list
of defined symbcls is constantly expanding, the coverhead in
this methcd is tcc great. The methecd chesen, 1hash-ccding,
ccnstrains the searck tc a sukset of all entries.  The
larger the hashk takle the faster the search. In crder .to
achieve rmaximum desirakility, the hash functicn should map
the glcbal symbols to the table in .a uniform distribution,
and the table shculd not be so large as to waste space, but
large encugh sc that the search does noct require an
inordinate amcunt of time. An example would ke a functicn
that mapped the first character of the pame tc a taltle of €4
entries (ccnsiderinrg a 6-kit character). The actual size of
the takle and defirition c¢f f(s) will depend ugon the
rarticular inplerentation. Fer this reascr, neither is
specified within this repcrt. (See [15] for a vsuriey of
kash-ccdirg technigues.) '
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U.Z Tetailed Flcw_cCharts

The algorithm is presented in this section as a series
cf detailed flcu-charts uithvacccmpanying deécripticn. The
format of the flcw charts is fairly simple. The Lackward
arrcw ( €— or +-) is used as a replacement cperatcr. The
relational operatcrs (=,+,<,%,>,2) are only used at a
prcgram trranch fpcint. The Lkcx ( [::::::] ) is used to

enclcse replacement operaticns. The diamond: { < )
and the hexagcen ({ < > ) are used to dencte'program
Eranch pcicts. The oval ( ( ) is used tc dencte a

functicn call. All functicns .that are called, except SEC or
IC, have a ccrrespending flow chart defining ther. Fcur
functions, CH(i,j), BYT(i,j.k), f£(s), and g{s) are hsed in
the rerlacement creraticns and are defined at their first

appearance.

At several pcints throughout the algorithm, tests are
made for an errcr condition (e.g., table overflow, improrper
format, etc.). These error ccnditicns may be fatal cr non-
fatal. Bcn-fatal errors are noted within the flow chart.
This replaces the typical acticn cf a diagnostic ressage to
the user. Fatal errors cause a branch tc an errcr €xit,
lakelled E. Rather than present an errcr-handling rcutine,
a takle of fatal errcr types is shcwn in Table 1.

4.2.1 Auxiliary RBcutines

In order to concentrate on the algorithm fcr a 1lcader
the details c¢f dinput, cutgput, and mass storage will te
avoided. 1wo functions, IC and SEC, will bke defined to
rerform these tasks. The functicn IO perfcrms the set cf
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El
E2
E3
E4
E5
E6
E7

E8

E9

E10

Ell

E12

E13 .

El4

I/0 error condition from the function IO

file system error from the function SEC

illegal control record encountered in user input
segment identifier missing from $SEG control record
available table;space (TBL) overflowed

more than one main subprogram is specified

a segment is referenced but is no where defined

the partial ordering given in the overlay description is not
complete

an element descriptor is referenced but is nowhere defined

a portion of the library iﬁdex is referenced but cannot be
found

the memory space avallable for program allocation has been
exceeded

the mass storage location referenced contains no information

an address’ reference is made between segments that overlay each
other

the list of available cells is empty

Table 1 Fatal error conditions for the loader algorithm
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inrut/cutput crerations with a specified unit. The five
oreraticns used within the algorithm are detailed in Tatle

Z2(a).

The functicn SEC is a simple file nmaintenance systen
that will Ye referred tc as the '?'secretary.'' The five
orerations that the secretary performs are detailed in Takle
z{k). The format cf the function call is SEC (i, MNAME , .
« =+ ), where i srecifies the cperaticn and PFNAME is the
file idertifier. The file identifier is a syntclic name
associated with a giver set cof records, termed a file. The
first operaticn (i=1) reads a record frcm the file MNAME.
The second cperaticn (i=2) writes a record tc the file
MNAME. In kcth operations the file is pcsiticned at the
rext reccrd cnce the operation is completed. The third
cperation {i=3) assigns a syrbclic file rame tc MNAME. The
fcurth cperaticn (i=4) positions the file to the =specified
reccrd in the .file MNANME. The fifth operation ({i=5)
releases the file FFAME to the secretary. The file acts
like a separéte I/C unit. Successive read operations will
read successive reccrds. Therefore, in the <case o¢f c¢cne
record tc a file, the secretary provides symkclic randcm
access to information placed on mass storage whether or not

actuval rardcm access is possitle.

Althocugh nct shown in the tatktle, both functicns provide
three return ccnditions wher their tasks are ccmplete,
normal }N), error {ERR), and end—of—infcrmaticn {ECI) . The
normal return occcurs when the tasks are corpleted as
reguested. An errcr return indicates an input/output unit
€rrcr, while an end-of-file return indicates that a physical
end-cf-file mark was encountered during an operation cf tbhe
IC functicn or that an end-cf-irfcrmation was encountered in
the functicn SEC.

Three cther rcutines are detailed in this secticn,
BUIIDLIST, EUT, and GET. These three routines, descrited as
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(a) I0:

the I/0 routines

10(1,1U,PLACE,N)

I0(2,IU,PLACE,N)

10(3,IU,PLACE,N)

10(4,10)

-10(5,1U)

read a record from wnit IU, transmit N
words of it to core location PLACE and
following

write a block of N words as a record to
unit IU from core location PLACE through
PLACEHN-1

read a record from unit IU to core loca-
tions PLACE and following, place the

number of words in N
rewind IU

write an end-of-file on IU

(b) SEC:

the I/0 secretary

SEC(1,MNAME ,PLACE ,N)

SEC(2,MNAME ,PLACE ,N)

SEC(3,MNAME)

SEC(4 ,MNAME , I)

SEC(5,MNAME)

read a record from mass storage file MNAME
to core locations PLACE and following;
place the number of words in N

write a record of N words from core loca-
tions PLACE through PLACEHN-1 to mass
storage file MNAME

provide a file identifier in MNAME

position to the I-th record of mass storage
file MNAME

release mass storage file MNAME

Table2 Description of the function calls to the I/O
routines and the I/0 secretary
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flow charts in Figure 26, create and prcvide access to the
list of availakle cells. BUILDLIST creates the chain cf
cells in the area cf the ocutput kuffer. F(AVAIL) pcints to
the first cell in this chain. The functicn call PUT (i)
Flaces a twc-word cell at address i tack onto the chain.
The furcticn call GET (i) detaches a two-word cell from the
chain and“places the address of the cell in i. These twc-
word cells are used tc forrm the library subprcgrar queune.

Tte first rhase of the lcader algorithe assembles all
tke input, cverlay description and relocatatle elements,
intc a data structure that represents the progranm. Figure
27 =shecws the general flow of control for this phase. Once
initialized, the task ccnsists of:

{a) processing the user input,

(k) ordering the segment descriptors if cverlay uas

indicated,

{c) cross-referencing the undefined and defined symkicl
takles,
(d) resclving the symktolic addresses left unresclved

ty step (c) in the likrary index,

{e) inputting each reloccatakle element from the
library and cross-referencing its undefined
synbcls with the defined symbol tatle,

{£) repeating steps (d) and (€) until the program is
ccmplete.

The details of the steps abcve are described in the detailed
flow charts which fcllow.
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Figure 26

BUILDLIST

F(AVAIL)<--F(OUT)
14--F(OUT)

el

J€¢--1+2

¥
| LINK(I)<--J

4
I¢--F(AVAIL)

!

| L(AVAIL)¢--I |
LINK(I)<¢~-0

p—e—d Y@ UYL

| F(AVAIL)<--LINK(I)

l

return

PUT(I) — >

F(AVAIL)=0

F(AVAIL)¢--I
L(AVAIL) ¢--I
LINK(I)--0

LINK(L(AVAIL))<--I

L(AVAIL)¢--I
]

N
L' 4
return
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Initializaticn

—r oy — . -

Initializaticn is shown in Figure 28, and ccmprises
fcur sters. First, an initial segment descrirtor is set ug
ir case the user dces nct require overlay, allowing his
prcgrar tc be treated as a single segment. Second, the
corppcn area table is initialized at the high address end cf
the table 1TBI. Third, the mode of the input is set to
indicate user input. Fourth, a 1list c¢f twc-werd cells
{AVAIL) 1is <created in +the <cutput kuffer by the function
EUILLCLIST. It should ke noted that S is used as a pointer
to the rext availakle lccaticn in the table TBL. It shall
retain this identity throughcut the first phacse. |
Ccrtrcl Record Input And Interpretation

Mcnitcring cf the control reccrd input and
interpretation is shown in Fiqure 2S. In the user pcde, the
ccptrcl record is input from the I/ 0 unit INU to the input
ruffer which Lkegins at F(INP). 1In the library mode, the
ccntrel record is input from the mass storage ldcaficn
indicated by the first element in the likrary queue (F{Q)).
In either case, the contrcl reccrd is processed in cne of
seven ways, depending upcn the contrcl werd. At this point
the next ccntrcl record is input. If an end of infcrmation
(ECI) is enccuntered in the user nrode, then the user input
is exhausted. At this point, a test is nmade tc see if more
than cne =segrent is defined. If so, then overlay is
indicated and the cverlay segment loader must ke input from
the 1litrrary. This is accomplished by entering the mass
stcrage lccaticn cf $1INK$ (stored as variable LINKER ) into
the 1library quete. In addition, the segment descrirptcrs
pust be re-crdered (see Figure 39). If there is only one
seqgment, this segrent is defined as the main seqgment, and
the lcader crcss-references the undefined symbecl 1list with
the defined syekcl table (see TFigure 44). An end-of-
information in the litrary mode sigrals the conmpletion cf
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N(SEG)<--1
MSEG<--0
MOD E<~~USER
F(SEG)<~-F(TBL)

L

S<-F(SEG)

oh

SEGN(S)<~-"$MAINS'
W(S+1)<=-0
W(S+2)<--0
W(S+3)<~-0

I

| Se—-S+4
C(SEG) <--F(SEG)

L

F(CAT) <--L(TBL)

C(CAT) <~-L(TBL)

BUILDLIST
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LIBRARY
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MASS<—-LIBLOC(F(Q))
C(SEG) «--ESEG(F(Q))

y

MSEG€~-F(SEG)

F(Q)<—-I

L(Q) «-s
NXTQ(I)<--0
LIBLOC(I)<-LINKER
| "ESEG(I)<--MSEG

4
SEC(1,MASS ,F(INP) ,N(INP) )L

N

-~

J<--F(INP) |
—

C(INP) <—-J+1 -

Figure 29
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input for the likrary sukprcgrar indicated by the first cell
ir the likrary gueve. At this pcint, the 1lcader cross-
references the =subprcgram's undefined symkol list with the

defined symbol talkle (see Figure 444).

Figures 3C through 37 shcow the processing cf the seven
tyres c¢f ccntrcl reccrds. The $SEC control record (Figures
3C and 31) is prccessed lexically to ottain the symiclic
nare assigned tc the segment and the symtolic names cf its
predecesscr secments., The lexical processing e€nmplcys a
function CE(i,j) which extracts the j-th character frcm the
string of characters keginning at i. 1In the flcw charts,
k' is wused tc represent a Flank character. A segment
descriptor is created for the segment at lccatien S. 1f
this 1is the first segment descriptcr, the variakle MSEG is
lcaded with its address. 1The symkolic rame of the segment
is rlaced in the SE¥GS field of the descriptor, and the nares
cf the rredecessors are placed in a list at the end cf tte
descriptor. Thte nuster o¢f predecessors is placed in the
FEEI field cf the descriptcr. The new segment descrirtcr is
linked to the prrevicus segment descriptor thrcugh the NXTSEQ
field of the previcus segment descriptcr.

The $EELCC ccrtrcl record (Fiqgure 32) causes an element
descriptor tc te «created ir the table area TBL. This
descriptcr is added tc the <chain of element descriptors
specified bty the STIOP and SBOT fields of the current segment
descriptor. The 1link is made through the NEXT field cf the
previocus element descriptor. The fields are initialized at
zerc except fcr the EIN field which is loaded with the nane
cf the <element, the SIZEL field which is lcaded with the
size of the elemert, and the SEGE field which is loaded with
the address <c¢f the current segment descrirtcr. The first
address field cf the third wcrd of the $RELOC ccrtrcl record
indicates whether cr not the sukprocram cortains the prograwm

starting lccation. If it does, then the address «cf the
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NXTSEQ(C(SEG) ) «~-S

S<--F(SEG)
! MSEG<~~F(SEG)
N(SEG)<--0

d

C(SEG)<--S

I<-0
J<=-0
K<--0
W(S)<-0
AADR(S)<--0
W(S+3)<-0
IN<~C(INP)

N(SEG) <--N(SEG)+1

“3

i I<—-:I+]. ’

CH(S+1,J) <—CH(IN,T) k= J<c-J+1

Je-0

S&-S+4

Figure 30

CH(S+1,J)<<-"b!

-—-)[ J&-J+1
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[[Je—-J+1 l
i--——-—-———'w .

CH(S ,J) <--CH(IN,I)

>

J€mmm T ] freed

MREL (C(SEG) ) €=-K

C(INP)<~-C(INP)+13

Figure 31

> J<-0
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Figure 32

C(ENT) <—-S
IN<~~C(INP)

N(ENT) <--N(ENT)+1
ske
ELN(S)<~-W(IN)

SIZEL(S)<--A2(IN+1)
ABSLOC(S)<--0

H1 (START) <--A1 (IN+1) -1
__HI(START)<—-S

W(S+2)<—-0
W(S+3)<—-0
w( S+4)<—-—0
W(S+5)<--0
SEGE(S)<-~C(SEG)
1<--C(SEG)

J€--SBOT(T)
S
NEXT(J)<~--~S

| STOP (I)¢—-S

. \R:
'SBOT(I)<--S
NEXT (S)<--0

S<«-5+8
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rrecqgram starting 1locaticn is placed in the first half cf
variable ST2KT, ard the address of the element descriptcr is

rlaced in thke seccrnd half.

The $UNLC ccrtricl reccrd ({Figure 33) causes the list cof
undefined syrkols to ke added to the current element
descrigptcr. ihe list of wundefined symkolic addresses is
added tc the tatle area 1TBL, the address cf the list is
flaced in the US1 field of the current element descriptor,
and the —turber c¢f undefined symkclic entries is gplaced in
the NU field.

The $CCFN ccntrel record (Figure 34) requires several
steps. First, fcr each entry in the control werd a cne wcrd
entry rust te added tc the element descriptor; the element
descriptor field CSI wmust pcirt to this blcck cf entries;
and field NC rust ccntain the rumker <cf entries 1in the
tlcck. Seccnd, for each entry in the ccntrcl reccrd that
dces nct have a ratching descriptor in the common area tatle
{CA1T) (matching mreans the same symtolic name), a new comrron
area descriptcr must te created. Third, the common symtol
list entries ir ‘the element descriptor must ke linked to
(i.e., loaded with the addresses <c¢f) the «corresgonding
entries ir the <ccmmcn area tatle. Finally, it must te
decided whtether the ccmmcn area is defined or undefined in
this sukrrcgram. I1f the <common area has already been
identified 3s defined in ancther subgprcgram {¥SIZ=0), the
compon area takle entry is left as is. If the ccmmcn area
is defined in this element, then the pcinter tc it in the
element descrirtcr is flsgged ty setting the first half cf
the pcinter scrd tc 1. Othervise, the ccmmcn area is
urdefined, and the field MSIZ in the common area descriptor
is adjusted to <ccrrespond to the 1larger of the =sizes
arprearing in the ccntrcl 1record and the ccmpmen area

descriptor.
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I<-C(ENT)
J<~-C(INP)

y

K<—~H2(J)
J€&-J+1
NU(I)<~-NU(I)+K
N(INP)<--N(INP)-K-1

USL(I)=0

USL(I)=<--§
B¢

W(8)<-W(J)

S<—-5+1
J<-~J+1
Re€-~K-1

Figure 33



MSIZ(P)=0

I<-~-C(ENT)
J€-=C(INP)

JE—-J+1
NC(T)«€~-NC(I)+K
N(INP)<--N(INP)-1

<>

CSL(I)«~-S

P&-F(CAT)

N(CAT)=0

COMS (P)<--W(J)
C(CAT)<~~P

N(CAT)«=-N(CAT)+1

CABSLC(P)<«--H2(J+1)
. HL(S )e-l

»

X
|MS1Z(P)€-H1 (J+1)]

Figure 34

S€-S+1
Je-J42

L1 ReGe=K-1

N(INP)<€-N(INP)-2
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The $CEFLY ccrntrcl record (Fiqure 35) is prccessed in
four stegs. In crder that there is a place tc stcre the
results of the cceplex calculaticns, a klcck c¢f empty vwords
equel to the nurker cf ccmplex addresses irdicated in the
ccrtrcl reccrd is added to the element descriptcr. The NCA
ard CAL fields cf the element descriptor are lcaded with the
nurker cf wecrds and address of the tlock, respectively. .The
ccntents cf the ccecntrel record (the corplex calculaticn
instructicns) are added to the element descripter as a klock
cf wcrds. The first word of the empty tlock is loaded with
the address cf this blocck.

The $LEF ccrticl record (Figure 3€£) is rrccessed in
fcur stegs, an entry at a time. First, the defined syrmtcl
takle is searched fcr a previous entry of the same symtolic
address. s this =search is made frequently, the tatle is
stored as several chains c¢f symkclic addresses. 1A hash-code
function. f{s), where = 1is a symkolic address, is used to
determine in whictk <chain a rparticular syrkolic address
aprears. The T[ST entry points the hash table. Second, if
the entry dces nct exist in the chain specified by the hash-
ccde functicn, then a new entry is made at the beginning cof
the chain ard the symbclic address is loaded into the DEFS
field of the entry. 1If the entry dces already exist, cne of
twec conditions exist. Either the symkoclic rame 1is tLeing
defined twice, which is ar errcr conditicn, cr the entry was
rade during defined symkol-undefined symbol resoluticn and
rust e ccmpleted. 1In the latter case, the UI field cf the
entry is egual tc 1, and the defined symtol entry is added
tc the element's chain of defined symtols. This chain is
addressed thrcugh the LSL field of the elemert descriptcer
and is lirked together thrcugh the ELIL field cf the defined
syrkcl entries. 1In this manner, the entry is linked to two
ctains, the <cther being the defined symkol tatle chain.
Fcurth, the RELAL, IKALR, and VAIUE fields are loaded.
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I<-C(ENT)
J<--C(INP)

v

K€--H2(J)
P&~-H1(J)
NCA(I) «-NCA(I)+P
N(INP) «—-N(INP)-1
J<&-J+1

4&

< H2(CAL(T))<-S

W(S)<--0

S<~-5+1

P€~~P-1

Figure 35

v

N(INP) <-N(INP)-K

e

W(S)<-W(J)

¥

S<=-S+1
K<--K-1
J<&=J+1

. 4

C(INP)<--J
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I<-~C(ENT)

J<-C(INP)
e

K<--H2(J)
Je=J+1
ND(I)<<-ND(I)+K
N(INP)<-N(INP)-1
N(DST) <--N(DST)+K

[P

NP

|

P<-F(DST)+£(W(J))

LI(S)<-1

E— )

DEFS (S) <-W(J)
FL(S) <-FL(R)

ST<--8+5
sk

FL(R)<-~S
SEGD(S) «<--SEGE(I)

1

RELAD(S) <--H2 (J+2)
ELTA(S) <1
ELTL(S)<--DSL(I)
VALUE(S) <--W(J+1)
UI(S)<-0
DSL(I)<--S

N2

S€--ST

J-J+3

Ke&-K-1
N(INP)<<-N(INP)-3

; K=0 >,*

C(INP)<-J |

\!

symbol
already
defined

4

N(DST) <--N(DST) -1

ST<—-S

[S<-FL(P) |

N

Figure 36
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The §$TEXT ccntrcl records (Figure 37) <contain tte
relccatable ccde for the sukprogranm. These reccrds are
stored tenpcrarily cntc mass stcrage thrcugh the =cecretary.
The secretary prcvides an address which is stcred in the
PASICC field cf the element descriptor. All cf the $TEIT
cecntrel 1reccrds for one element are written tc the sare

address.

As an exapmple, Figure 38 shows ©part of the Twmemory
ccntents after prccessing the user input shown in Figure 7.
The takle area TEI extends frcm 10005 to 7777;. The ocutput
Yuffer extends frco 110004 tc 117773. The segment
descriptor is in lccations 10008thrcugh 100§g ard indicates
that there is cne segment {i.e., the NXISEQ field ccrtains a
zero) and cne element (SBOT(10C0,)=STOR (1000,)=1005;). The
element descriptcr tegins at 10058 and extends through 1020
and is translated as follows. The element's symkclic name
ie BAIN. 1he element contains one common area (NC(1005?)=1)
the address c¢f which is at 102(}g and three undefined symktcls
!NU(10058)=3), the symbclic addresses pf which tegin at
1C158‘ The executakle code, when translated frcm the
relccatable ccde (stcred at HAS}CC(1OOEK)=IEXTO1), will
require 12 words cf merory. The three wundefined symtclic
addresses are SIN, CCS, and SUER. The ccrECh are€a
descrirtor car ke found at 1lccation 77768‘

The ccmecn area takle in the example ccrsists c¢f cne
entry at the <cther erd of the takle area TBL (address
77768).

indicates that the ccmrcn area must have 1Og megcry words

This ertry 1is fcr the <ccmmen area ELCCK and

when allocated.

The cutput kuffer in the example (wcrds 110003 to
117778) ccntains the chain cf availakle cells. The second
wcrd of each twc-wcrd cell contains the address of the next
cell in the chain. The F field of the pointer entry AVAIL

fcirts tc the first cell in the chain, while the entry
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Figure 37

I¢--C(ENT)

J<--C(INP)

NNe¢--N(INP)-1

| L(CAT) <~-F (CAT)

SEC(3,TEMP)

MASLOC(I) <~--TEMP

<

GEC(Z,MASLOC(I) ,J,N@
y

NB(I)«--NB(I)+1
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L (AVAIL) pcints tc the last cell in the chain.
Fe-crdering Of Segqment Descrirptcrs

Cnce the user input is exhausted, if memory cverlay has
keen indicated (NSEG#1), ther the seqgment descriptcrs are
re-crdered. EFach $SEG cortrcl record ccntains a 1list of
synkolic names c¢f the csegment's immediate predecessors in
the cverlay structvre. Examinaticn of an cverlay structure
shcws that the segments are partially crdered ky the segment

~specification. A set of segments is partially crdered if a
relaticnshif < e3xists ketween them such that, for segments
X, ¥, and z:

(a) if x £ y and y € 2, then x < 23
(b) if x < y and y < %, then x=y;
(c) x<x.

The relaticn x € y is read ''x precedes or is equal tc y.'?
In the segment specificaticn, each rpredecessor ( BREDi)
listed with the segment identifier ( SNAME ) wculd have the
relaticn EBEDiI < SNAME . As the predecessor list dces nct
allcw egualities tc be shown, conditions (a) and (L) are met
by the 1lirearity of the nmemory and condition ({c) is
understood but never specified.

It is necessary tc scrt the segments in such a way that
nc segment is allocated memory prior to a pfedecessor
segrent because tc allocate nmemory space to a segment
requires the 1lccaticn cf all predecessor segments. D. E.
Knuth [14] prcvides an algerithm for this very Ffproktlenm.
Given an input cf relationships that fcre a ;értial ocrdering
in a set cf elerents, the z2lgcrithm performs a tcpclogical
scrt (i.e., it emkeds the partial crder ir a linear crder).
The algorithe is mocdified slightly to suit the data

structure cf the lcader.

The tcpclcgical sort is descrited in Figure 39. The
sort requires that each segment to be ordered has a list cf
the segments that are =specified as following it in the
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H1(S+1)<~-S
H2(S+1)¢--J
I¢--1+1

‘ f

NXT(I+S) <-~TOP (J)
TOP(J) 4==I+S
COUNT (S) «~-COUNT (S)+1

MSEGe~--S

FRe--S

| Re--s
NNe--N(SEG)

N

Figure 39

NN¢--NN-1

Se--TOP(FR)

[ooum<suc(s))<-—com<suc<s) )-1

NSEG(R)<--SUC(S)

R¢~-SUC(S)

P

SUC(S) «~~FR
S¢--NXT(S)

| ‘
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partial order. 1In cther wcrds, a segment SNAME wculd have a
list c¢f all the segment identifiers ccrresgonding to
predecesscr liste in which SKAME appears. This list is
called the 1ist of direct successors. However, the data'
structure asscciates each segment with its list of direct
rredecesscrs. Therefcre, the first task of the sort is to
prerare the structure.

Between 2.0 ard 2.02 in the flow chart in Figure 239,
each entry in tke list cf syrbtolic segment identifiers at
the end of each segment descriptor is changed tc¢ a word
containing twc ©pcinters. The first pointer ccrtains the
address cf the segrent descriptecr to which the 1list is
attached, while the seccnd rpointer contains the address of
the segment descriptcer previously named in the entry.

Between 2.0RF and 2.0E in the flow chart, the 1list cf
fredecesscr relaticn werds is processed again. Fach entry
is ncw added tc the chain of direct successors c¢f the
segeent descriptcr that is pointed to in the second half of
tke word. Tc dc this the TCP field c¢f the segment
descriptor 1is 1lcaded with the address o¢f the word that
rcinted tc the segment descriptor, and the seccnd half of
the word is replaced with the old contents of the ICP field.
In additicn, the CCUNT field of each ségment descriptor is
loaded with tte rumber cf relation words that appear in the
list at the end of the segment descriptcer. The COUNT field
contains the nueker of direct predecessors cf the segment,
and the TCP field ccntains the address cf the first in a
chain ¢f c¢ne wcrd direct successor cells. Each cell has a
SsuC field, that contains the address of the segment
descriptor that it represents, and a NXT field, that
contains the address of the next cell in the chain.

After 2.0B in the flow <chart the topclogical scrt
ktegins. The scrt is initialized by finding the segment
descriptor with a zero CCUNT field, indicating no



95

rredecesscrs. Ttere shculd e only one such segrent, and
this is called the *'main segment.®? The variakle F¥FSEG is
lcaded with the address of this segment descriptcr. The
scrt tegins at this pcint. The list of direct successcrs is
Frccescsed. As each cell is encountered, the CCUNT field of
the segrert tc which thé cell ccrresponds (addressed Ly the
SUC field) is decremented. If the CCUNT jield reaches zerg,
the seqgment descriptcr is added to the chain cf crdered
‘segrent descriptecrs (linked through +the NSEG field). 1In
addition, the cell is remcved frem the chain ard crce again
lcacded witt the address cf the predédesscr. The variable FR
 gcints at the‘segmént descrip@di Qhose successor chain 1is
‘currently being frocessed, while the variatle F pcints tc
the end cf the chain cf ordered seghent Vdescriptcrs. The
algorithm tergirates wher the CCUNT field cf all segments
has gcne tc zero. 1f the variakle NN is nct zero, then all
segrent descriptcrs have nct Leen added tc the chain cf
crdered segrent destriptors. This car cnly mean that there
is a disjcint set of segments in the overlay description.

This nmust be treated as a:fatal error.

. Figures 4C through 43 show the cha@ge in' the segment
descriptors <c¢f the example shown in1Fighrgi10 during the
scrt. Figure 40 chows the eleven segment descriptcrs with
the symbclic rage in the second word of each descripteor and
with the list cf predecesscrs keginnirg ir the fifth wcrd cf
each cell. The =segment descriptors are each assigned an
address and linked together via the NXTSEQ field in the
crder in which they ﬁergr input (shown ty arrows alsc).
Figqure 41 cshows the Mseggenf descriptors after the first
stec. It shculd be  ncted that each predecesscr entry
contains the address cf the segment descriptor in which it
apgears 1in addition tc the rpointer tc the rredecessor.
Figure 42 shows tte Qescriptors after the seccrd steg. The
TCE field cf each descrirtor peints tc a chain cf

successcrs. Fcr example, the successcrs of MAIN are B, a,
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Figure 42
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L, C. The segment J is on the successor chain of G, I, and

[, fut it 1is regpresented by separate one-word entries.

Figqure 43 shows the segment descriptors at the end cf the

sort. The NSEC field ncw links then together, MAIN, B, &,

r, ¢, 6, E, ¥, B, I, and J. It should be ncted that this
preserve the partial order.

teferencing And Likrary Search

Cnce tlte user input has teen exhausted and any required
segment re-crdering kas Lkeen accomplished, cr after each
likrary sukprcgrz® has keen input, the lcader cross-
references the undefined symkcl 1lists with the defined
syrkcl takle and resolves all urresclved symbcls. The
‘czcss—xeferencing is handled in one of two ways depending
upcr the mcde cf input.

In the USEE mode, when the>end-of-file has been reached
and the crdering cf segment descriptors has been completed,
the undefined symkcl lists cf all the wuser elements are
cross-referenced with the defined symbol table (Figure
uu(af). In the LIERARY mode, the undefined syrbol 1list is
crcss-referenced with the defined symbol table as each
litrary element is input (Figure 44(b)). The LIBEARY nmode
alsc requires that the first cell from the litrary gqueue te
rencved and returned to the list of availakle cells, and
that the next relocatatle element be input if the likrary
gueue is rct eupty; At the end of the user input =mcde and
when the 1litrary gqueue is empty during the likrary input
mcde, the lcader then attempts tc resoclve all urresolved
syerkcls thrcugh the library.

Crcss-referencing, shown in Figure 45, ccpsists of
rerlacing each =ysbtoclic address in the undefined syrmbcl
lists cf element descriptor I with the address of the fcurth
word in defired symbcl descriptor of the identical nanme.
The fcurth word will cortain the aksolute addresses assigned
to the defined syekol. As scme defined symbcl entries nay
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MODE<~-LIBRARY

K
| 1<--MSEG
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o
'T<--STOP (1)

b
>

1=0

#
XREF(I,S)

A

| I<—-NSEG(SEGE(I))

T<~-NEXT (1)

E_[-(—-—C(ENT)

J<--F(Q)
¥

F(Q) <--NXTQ(J)




102 mr(I,S).vq(l)

J&-USL(1)
R<—-NU(I) ) Ke--K=~1
Je—J+1
[ec-rF(DsSTY+E(W(I)) | J<G-SEGD(R)
return
| J&-NEXT(J) ]
y
P<--FL(P)
RG-FL(P)
S
DEFS (5) <-H(J)
LI(S) -1
W(S+2) -0
SEGD(S) <~SEGE(I)
UL(S)€~C(UST) | NEXT (K) <-NEXT (J) |
FL(S)G<FL(R) | STOP (SEGD(R) ) €--NEXT(J) ]
UL(S) @l '
¥ K<G—SBOT(MSEG)
FL(R) <-S
C(UST) €&-S A NEXT(J) -0
N(UST) <-N(UST)+1 . SECE(J) <-MSEG
J"r-s SBOT(MSEG) &-J
s NEXT(K)<G~J
N(DST)€--N(DST)+1 J€-DSL()
[ mmers | " -
. - *
LI(R)=1

SEGD(R) «--MSEG

Figure 45



103

nct ke in the tatle, wten a takle search is urnsuccessfel a
rew entry is «cieated 1in the takle. 1In crder tc rememkter
tkat this defined =symbcl is unresolved (i.e., does nct yet
ccrresrcnd tc an element), the defined symtol entry is added
tc a chain of unresclved symltols. In addition, when a
reference is made from one element to an element in a
different segmert and the seccnd e€lement is a litrary
elevent, the 1likrary element is moved tc fhevmain segment
unless cne cf the two elerments uéé 'élready in the main
sequent. This assures that the lcader will never introduce
address references btetween segments that overlay each cther.

This alsc wminirizes segment lcading.

Whenever the unresolved symkol list is not- empty and
the 1litrary gueuve 1is empty, the unresélved symkecls are
resclved ty searching the litrary index {Figure 48). The
litrary index 1is dinput from mass storage locaticn PLIB
{initially IIEB1) , and the upper and lower bounds are stored
in UB and 1E, respectively. At this roint the ptccessing cf
the unresclved syrkcl chaih regins. 1If a symkclic name cf
the defined syrkcl is within the range of the irdex (LB <
CEFS (UL {(I)) < UB), then the index is searched for a matching
entry. Whether the wentry is fcund or nct, the defined
syrkcl is ccnsidered resclved. If it dces nct exist, then a
diagnostic afpgears. If the entry is found, the likrary
gueue is searched tc see if the element's mass stcorage
lccaticn has Leer entered into the queue. If it is not in
the queue, the mass stcrage lccaticn of the elemert and the
segment tc which the element shculd ke attached are entered
irtc tte gqueue. If the mass stcrage lccaticn cf the element
is already in the queue, the segment is checked tc make sure
that if the element is to Lte referenced from different
segments, that it will arpear in the main segment,' Once an
€lerent has keen resclved, the defined =symbcl 1is wunlinked
from the unresclved symkcl chain. When all cf the defined
syrkcls cccuring in the range LB tc UB have Lkeen resclved,
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I€--UL(I)

UB€=-W(J+1)
PLIB&~-W(J+2

LB<DEFS (UL (1)) <UB

F(Q)=0

(9

unable to
resolve

DEFS (UL(1))
T

_Pe--UL(D) |

N(UST) «—-N(UST) -1
UL(1)<~-UL(P)

UL(P) ¢~-0

i

Figure 46

ESEG(P)<-~MSEG

SEGD(UL (1)) «--MSEG
j 2

P4~-NXTQ(P)

L(Q)<-R
F(Q)<-R

¥
NXTQ(L(Q))<--R
1 L@=<-r

LIBLOC(R) «~W(J+1)
ESEG(R) <~~SEGD(UL(I))
NXTQ(R) <--0

}
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tte next secticr c¢f the litrary index is'inputs When all
syrkcls have beer resclved, the input of lihrary“ celements
tegins. The rrccess of inputting ends when the lilrary
gueue and the unresclved symkcl queues are botk erpty. This
conpletes the first rhase cf the 1cadér, 211 taltles have
teen constructed, segments créered, and lirks have Feen
creafed tetween the defined =sywrkol fabie and undefined
syrtcl lists apd between the ccmmon symbol lists and ccmmen

ar€a~tab1€.

Fiqure 47 <chcws the remcry ccntents after cross-
referencirg the tables of the example in Fiqure 38. The
tndefined symbcl list ¢f subprogram MAIN (locaticns 1015?
thrcugh 10118) have now been loaded with the addresses cf
the fourtlt wcrd ir the defined symkol entries at locaticns
1024, 1031, and 10365 . These are the entries for SIN,
CCS, SUBR, resrectively. Because all of these erntries are
unresolved, the € field cf the urnresclved symkcl takle entry
{UST) ccrtains the address (1033,) cf the first of a chain
of three entries that are linked thrcugh the UL field. The
defired symkcl takle «consists cf +two chains. Fcr the
exarple, the hash function divides the alphaket -in half
(i.€., sycbclic names beginning with letters A thrcugh M mag
tc the first table lccaticn 7768’
takle locaticn 777g). The chain indicated at 776, ccnsists
only of the entry at 10268 {CCS). ©HKote that the L1 field cf
this entry is zerc. The chair indicated at 1lccation 7'?78

the rest map to the seccnd

consists «c¢f twc entries, at lccaticns 10333 ard 10218 (SUER

and SIK, respectively).

Figﬁre 48 shcws the remcry ccntent after resclving the
urresclved syrkcls in the likrary index shownp in Figure 12.
Thke unresclved symkcl table is now empty (the twe-wcrd cell
at CST and the Ul fields of the entries at 10218’ 1026?, and

1(133‘3 are zerc). Hcwever, now the litrary queue, which is
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addressed by the F and 1 fields at ¢, contains two entries,

I1IBICT at address 11000, and IIBLC2 at address 110028.

Figure 4¢ shcws the memory content after corpleting all
input, wuser and 1library. There are now three element
descrigptors, at lccaticns 100%.., 10&08, and 10663
r1epresentirg sutprograms FAIN, SUERTN, and SINCOCS,
respectively. The subrrograms SUBRTN and SINCCS are shcwn
as relocatalkle elements ir Figures 8 and 9. Ancther defined
symtol takle entry has keen sdded at lccation 1053X fcr the
synktclic address CNSTINT in sukprcgram SUBRIN. All of the
defired symkcl talkle entries have keen cocspleted, with their
Telative addresses appearing'in the RELAD field. 1Twc of the
defined syrbcls, SIN and CCS, are relative to the sulkprcgranm
SINCCE. 1This is indicated by the fact that the LSL field cf
the SIKCCS element descriptor points to location 1021, the
SIN entry, and the §IIL field of this entry poipts tc 10268,
the CCS entry. 1The cther twc defined =eymbcls, SUBR and
CNSTNT, are relative tc sukrrcgram SUBRTN.
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4.2.32 Glokal Allccaticn

After all elerents have keen input, the lcader proceeds
tc trhase twc, glcbal allocation. In this rhase, the
aksclute addresses of all ccmmon areas, sutprograms, defined
symkcls, and ccrplex addresses are computed. By ccomfputing
atsclute addresses, memcry is allocated to the ccrmon areas
and sukprograsns. Figure 50 shows the tasic flcw of this
rhase. After the ccmmcn areas are allocated sface, each
segrent is allccated space in the crder that resulted from
the tcpclcgical scrt. A segment is allccated by assigning
each =subprcgram w«ithin it an atksolute address. As each
€lenert is allccated, the defined symbols and common areas
that cccur withkir it are assigned absclute addresses. EFEach
segrent is assigned the remcry space fcllowing the 1largest
of its rredecesscr segments. Once all =segeents . are
allccated, the complex calculaticn takles are frccessed to
frcvide the corplex addresses with values. The glokal
allccaticn is terminated ty assigning the starting address.
It =shculd be ncted that glotal allocaticn requires cnly the
data that exists ir thé tables.

Rllccate_Indefined_Commcn_ Areas

—— — ——— — — ——— T —. . T D  ——p P G G e s A0 i o

Figure 51 shcws the allocaticn c¢f undefined ccmmen
areas Letween 3.C and 3.0B in the flcw chart. The variakle
BAESAL is used thrcughcut tte rhase as the next availaktle
mercry lccaticn. This 1is initialized with the value of
BASE, the lowest memory address availakle to the user. The
undefiped ccmmcn area must be allocated in the resident part
of the prcgras because of the overlay structure. The
aksclute 1lccaticn o©f each ccommon area is placed in that
entry's CAESLC field, and the value cf ABSAD is increased Lty
MSIZ. A test is mzde each time ABSAD is increased to see if
tte highest availalkle address, TSPACE, has reen exceeded.
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Wher all ccmempcon areas have keen allccated (N(CAT)=0), then
the total numker cf wcrds allccated to undefined ccmmen is
rlaced ir TOCTZ. The address c¢f the first segment toc te
allccated, MSEG, is rlaced in 1I.

—— i " o i o, e A i < . Sl g i T < .

The allccaticr cf cne segment is shown tetween 3.0R ‘and
2.CE. The flcw chart first tests fcr the existence cf the
segment lcading sukprcgrar, $LINK$. The rresence cf this
will ke 1igncred for ncw. Each element is assigned an
aksclute address ir its ABSLOC field. The 1list <¢f ccommon
areés for each element is scanned tc see if ary are defined
withkir the elerert (H1(K)=1). Ihosé aré assigned an
aksclute address by adding the relative address stored in
CABSIC to the absclute address ABSAL. Next, the 1list cf
defired symkcles 1is processed. For each entry the relative
address in the RELAL field is added tc the aksclute address
assigned tc‘the €lement, ABSAD. Wtken each elerert has been
allocated, the value cf ABSAE is increased by the value cf
the . SIZEL field <cf that element descriptor, the test for
remcry cverflew is rade, and the next element descriptor is
lccated. <Cnce all elements in a.segment’have teen allocated
(NE¥T (J)=C), the address assigned to the segment is sﬁored
in the RAALR field cf the segment descriptcr,'and the hext
availaktle address is stored ir the HADR field. This defines
the extent of the segment. '

If the user prcgram'is segmented, then rmemcry cverlay
is indicated, and the likrary routine that perfcrms the
segment 6ver1ay, named $LINK$ herein, has keen added tc the
rairn <segment's <chain of elements. This  sukprcgram is
allccated memcry in a different manner, and thetefore, the
algerithm scans fcr this subprogram specifically. When it
disccvers it, it stores the atsolute address irmediately
following it in | variable SEGTAE and increases,tﬁe €lement

size irdicated fcr it by the number of segmrents minus 1.
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This is dcne sc that a tatle of segment locaticns ray te
lcaded intc the remcry inmmediately following the sutprogranm
$IIKKE.

Before the next segment <can Lte processed, the HALR
fields of 311 the predecesscrs must te ccrpared tc find the
largest value. The last part cf the flcw chart describes
the tests necessary tc acccmplish this.

Cerrute _The Ccrmrlex Addresses

Cnce all secrents have Freen allocated, +the <ccrplex
addresses are célculated (Fiqure 52). This requires that
each element descripter ke scanned to see if it ccrtains a
ccrrlex address list. As mentioned, the first wcrd of the
ccrnplex address list contains the address of the .takle <cf
ccrplex calculaticns fer that list. The table is a sequence
cf talf-wcrd instructions that define the calculaticns to te
perfcrred fcr each ccrrlex address. In order to unpack the
instructicons, the zlgorithr shkcwn in Figure 52 uses a switch
8% tc indicate which half-word is Lkeing executed. Once the
instructicn hes teen unpacked intc the operator field OPC,
the +takle indicatcr field TI, and the takle index field
INCEX, then the address cr value cf the syrkclic address at
lccaticn index in takle T1 is retrieved by the FIND

functicn.

Figure £3 shcws the flow chart for the TFIND function.
If TI 4is 1, then the address of the defined syrkcl pointed
tc at locaticn INLCEX cf the undefined symbol 1list is stored
in VAL . If 1I is 2, then the contents of the VALUF field
of the defined symkcl is stcred in VAL. If TI is 3, then
the address cf the ccmmen area pcinted tc at lccaticn INDEX
of the comrmen symkcecl 1list is stcred in VAL, If 1I is 4,
then the ccmplex address lccated at locaticr INDEX in the
ccrplex address list is stored in VAL. 1If TI is 5, then the
value cf the index is loaded into VAL. TIf TI is O, 6, or 7,
rctbking hagprens.
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Once tte variatle VALl has tkeen set hy‘thé FINLC function
the operaticn srecified by the operator field CEC is carried
cut:

(a) if oPC

{t) if CEC

{c) IF CEC

N1;

{d) if CPC is equal tc 4, then N1 is rultirlied Ly

VAL ;

(e) if CEC is equal to 5, then N1 is divided ty VAL;

{£) if CEC is equal to 6, then X1 is stored in the

ccrplex address 1list at location INLCEX, and the'

n

equal tc 1, then VAL is lcaded intc N1;
equal tc 2, ther VAL is added tc K1;

bde  eds
n

equal tc 3, then VAL is suttracted free

de
n

calculaticn is ccnplete.
The complex address list cf each element 1is ¢prccessed in

this manner.

Once all corplex addresses have Leen calculated, the
atsolute address cf the starting address is ccrputed and
stcred in the first half of variakle START. At this point
glctal allocaticn is .complete, and the processing of
relccatakble ccde begins. ‘

e e e -

Figure S4 shecws the contents <¢f nmenmcry after glockal
allocation for the examrle. The common area ELCCK
{descriptor at lccaticn 777635 has been assigned absolute
address 10003. The subprcgrams HMHAIN, SUBRIN, and SINCCS
{element descrirptcrs at 10058, 10&08, and 106@8
respectively) have been assigned absolute addresses 1012
1024
lccaticns, svubtprcgram MAIN ‘required 128 lccaticns, and

: T
£ and 122148 kecause tke ccmmon area required 12?

sobkgrogram SUBETN required 200.8 locations. Defined symbels
SIFN and CCS rerresenting symkolic addresses at relative
lccetions £ and (0 within subtprogram SINCCS, have been
assigned &ksclute addresses 1231, ard 122%g' respectively.

g
Lefined symkcls CNSTINT and SUBR, representing symkolic
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addresses at relative locaticrs 0 and 103 within sukgprcgrapw
SUEFTIN, have keen assigned s&ksclute addresses 1024, and
103ﬂ3, respectively. The complex addresses at lccéticns
1CE13 and 1062g have been calculated and ccntain valuoes

SEE g€
if_ﬂég and 76««38.

The third and last phase cf the lcader algorithm is to
trarslate all the relccatakle code to executakle ccde, using
the absclute addresses assigned in phase two, and tc output
the atsclute elernent. Figure t5% shows the flow chart for
this phase. In the case of memory overlay, seven tasks nust
te rerfcrred:

(a) setup anrd output the header record;

{t) translate the relccatatle ccde fcr each element in
the overlay segments and ocutput the executabkle
ccde;

{c) translate the relocataktle code for each element in
the main segment and cutput the executalle ccdey

{d) assign a linkage tatle address fcr each glckal
address that is referenced frcem ancther segment;

{e) setur and ocutrut the segment takle;

(£) cconbine and cutput the linkage table;

{(9) rerfcrm all necessary print-out.

If there is nc cverlay, then crly sters {(a), {c), and {qg)
are rerforred.

The cutput cf the header record is shown as a deteiled
flow chart in Fiqure 56. The header record consists cf four
wcrds, containing the rame of the aksclute element (ANANME),
the locaticrn and numker of undefined commcn area wecrds (BASE
and T0TZ), the starting address (H1(START)), and the main
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segrent indicator flag (BINL). 1In addition, the first half
cf the seccnd word is set to 1 if overlay segments follcw.
The record is cutput tc I/C upit CUTU.

The prccessing of overlay segments is shown as a flcw
chart in Fiqure £7. Fach seqgmert is initialized Lty setting
the segment indicator INDIC tc zero, settirg the ELC field
of the segment descriptcr tc zero, storirg the current
nurker cf cverlay segment reccrds in the CUTLCC field of the
segment descriptcr, and loading J with the address of the
first elerent descriptor. For each element, prccessing is
ipitialized by 1lcading the input buffer (first lccation is
F(INE)) with the first block of reloccatatle <ccde frcom
€lement's tempcrary mass storage locaticn MASLCC{J). The
relccatakle ccde fcr the elerent is translated and cutput Lty
the functicn TRANS which is explained in detail belcw. Once
the translaticn cf the relccatakle code 1is ccrrlete, the
Fass stcrage lccation MASLOC(J) 1is released to the
secretary, the next element descriptor is located, and the
element frccessed. When all the elements for the segment
are processed, the next segment descriptor is 1lccated and
the next segment is prccessed. When all segrments have teen
processed, the variable I is lcaded with the address c¢f the
segment descriptcr fcr the mair segment.

The flow chart in Figqure 58 describes the processing cof
the wmain =segment and, in the case cof overlay, the creaticn
and output of the segment takle. The forrer is essentially
the same as fcr overlay segments except that the segment
indicator, INDIC, is loaded with the main segment indicatecr
flag, MIND. The translation of the relccatakle ccde ky the
functicn TFANS is discussed later.

The creaticr and ocutput cf the =segment takle cccurs
cnly if =mcre than cne segment was input; ctherwise, the
algcrithm is complete except for writing an end-of-file mark
cn the cutput wunit CUTU. In the case of overlay, the
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overlay segment lcading sukprrcgram $LINK$ regquires a segment
tatle defining the 1lccaticn and size of each cverlay
csegrment, Fcr this algcrithm linear files are assumed, and
therefcre the reccrd 1lccation CUTLCC({I) and the numler cf
reccrds BIC(I) 1in the segment I will satisty the
requirements. The table must te rplaced ipmediately
fcllcwing the $LIBKE subprogram at the address stcred in
SEG1AB. The cutput 1is formatted as a scatter lcad record
with the veriakles INLIC ard SEGTAB in the first word and
the segment table following. The segment tatle is made 'up
cf cne-word entries. The fcrmat of +the $LINKE is not
srecified within this repcrt. Instead, an undefined mapping
g (CUTLCC(1),ELC(I1)) is used tc ccnstruct the entries, with
the understanding that the definiticn cf $LINK$ includes the
defiriticr cf g.

The creaticn and outrut cf the linkage takle 1is shoun
ir Fiqure S€¢. A part cof the TRANS functicnr has created a
chain cf glcbal addresses that are referenced from cther
segrents, and assigned each a unique address in the linkage
takle. Thkis chair exists within the defined symkcl table,
Fut «can e corsidered as separate. The first descriptor in
the chain is rcinted tc ky the field F(ELT). The chain is
linked via the U1l field cf each descriptor ir the crder the
lirkage addiesses were assigned. The 1linkage address is
stcred in the LKATLR field. The output record is generated
as a scatter-lcad word, containing the segment indicatcr and
the address <¢f the first entry, followed ky the takle cf
tsc-wcrd entries. The two-word entry (Figqure it (c)),
ccrtains a $I1IKK$ subprogram (JUMEWCRL) in the first word,
while the seccnd xcrd contains the segment nurkter in which
the defined syrbcl is 1lccated and the absolute address
assigned tc the defined symtol. The segment numker
corresgends tc the segment table descriked atove., Each
entry in the chair is prccessed until the cutput tuffer
fills up c¢r until the chain is exhausted. 1If the cutput
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tuffer £ills up, it 1is cutput and rprccessing ccntinues.
Whker the <chain 1is exhausted, the output buffer is cutput.
The atsclute element is now complete, and an end-of-file
rark is written cn the ocutput vnit CUTU.

The last =step, the print-out, is cmitted from the
rercrt as it derends to a latge extent on formatting cf
syrtclic cutput, a procedure that varies from machine tc

rachine.

At this pcint, the relocatable code translaticn
functicn is described. The functicn performs fcur sefparate

tasks:

(a) each relccatakle wcrd is unpacked from the ingput
tuffer, translated, and packed intc the cutput
tuffer;

{b) if the relocatatle word was an address referencing

& glctal symtol, it checks toc see if the reference
was to ancther segment;

(c) if the cutput kuffer fills up, it cutputé the
buffer and re-initializes;

(4) if the end‘cf an input tuffer is reachéd and
ancther block cf relccatatle code rermains c¢cn mass
storage, then thke blcck is input.

The four tasks are descrited in the fcrm cf flcw charts in
Figures 60 and €1. Tasks {a) , {c), and (d) are descrited in
Figure €0, while task (k) is descriked in Figure 61.

The second task <c¢f the translaticn rcoutine is to
reccgnize all inter-segment addressing. This is prcvided
with the functicn CHECKLINK shown in Figure 61. This
function checks tc see if the defined symbol at lccation X
is ip the same segment as the subprcgram rerresented by the
€lerent descriptcr at location I. TIf so, then T is set to
zexc and the function returns to the translaticn. I1f not, T
is set tc «cne, and a check is made to see that a linkage
entry is allccated tc the defined symtol. The linkage entry
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is preovided Ly stcring the address cf a twc-word cell frcnm
tte availakle mercry space inte the LKADR field <cf the
defined syrtcl entry and linking the defined synmkol entry to
a chain of linkage entries. Also, a <check is &rade tc
ascertain whether the address reference is ltetween segments
that overlay eactk cther. If sc, depending upcn the value
assigned t¢ the input variakle CK, an errcr tersinaticn
cccurs, or the trenslaticn corntinues.

The translaticn requires urpacking cf the relccatatle
code from the input ruffer and repacking the executakle ccde
into the «cutput Lkuffer. The relocatable irput and
executakle output is in the fcrm of a string cf relccatable
wcrds, each cf varying 1lengths. ~ In order tc facilitate
descriprticn, twc string pointers, BI and BC , are used as
fFcinters tc the current byte in the strings located in the
input and cutput buffers, ccunting from the beginning cf the
tuffers. 1The functicn BYT (i, j,k) is used toc indicate the k
kytes keginning with the j-th kyte counting frcr memcry word
i. Other variakles used are NBYT fcr the numhet cf kytes in
a repcry vwcrd, KT for the numkter of words currently stored
in the cutput tuffer, TKT for the total number of wcrds cf
executable ccde prcduced for the subprogram, and SW for the
switch that indicates that nc more input remains.

The first, third, and fourth tasks are shown inp Figure
€C. These tasks are initijalized Lty setting the variatles to
their initial values. Fach time the cutput tuffer is
initialized the first wcrd cf the kuffer is lcaded with a
scatter load wcrd. The segment ihdicatcr INDIC is stored in
tke first half cf this word, and the address at which to
lcad the blcck c¢f executaltle code is stored in the seccnd
half. This address is equal to the subprcpram address
ABSICC plus the tctal number c¢f words of executalle ccde
already froduted for the sukprcgram, TKT. At this point,
the tramnslaticn of the relccatakle code Legirs. The
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SWe--0
J<-~F(INP)

Ble~-0

TKT<¢-=0

: TRTE~-TKT+KT

K<¢~-F(OUT)
BO<-~NBYT
H1(K)€--INDIC
H2 (K)(---ABSILOC( 1)+TKT

{FLD¢--BYT(J,B1,FS(1D)) |

\ L
3 2 5
| X¢-—-A2(FLD(ID))| [X€--A2(FLD(ID))] [r¢--a2(FiD(p))] [ xé--A2(FLD(ID))]

| xe--aBsroc(r)+X| [xeé--csn(1)+x | [xé—-usL(D+x | [Xeé-—caL(D+x ]
X6-~H2(X+1 %€--W(X)
A
[ze—m10] [x--220] SEC(1,MASLOC(I) ,F(INP) ,N(INP)))Y
' EOX

JE-F(INP)

| x€-xeBYT(3,B1,75(1D)) Pl %¢--X-BYT(J,BI,Fs(1D))]

BI¢--0
[Brc—B1+7s (1m) } - 9 —[B1eBreFs (i)

=)

3> KT€--(BO+1) /NBYT

@ RER£ 10(2,0UTU, F(INB ,KT)

[BLC(SEGE(I)) &-~BLC(SEGE(I))+1]

¢ St=l

Figure 60

return
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CHECKLINK(X,I,T)

Im(x)(——nswl

| ABSAD(-—ABSADJ-ZI

[—————
. IUL(L(ELT))(—-X—3J
L_—— \
L(ELT) €-~X-3
UL (X-3)€--0

ABSAD>TSPACE

<

J€--SEGE(T)
K€—H1(X+1)

note that a
branch has been
performed between
segments that
overlay each

other.

0K=0 1

@ .
return

Figure 61
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variakle 1L is lczded with the first tyte cf the relccatakle
wcrd (IC+-EYT(J,EI,1)). There are three fields 1in this
kyte: CE(ID) is the operator field, FS(ID) is the size cof
tte field tc Lke +translated, II(IL) 1is the increment
indicator field. ©Next, the FS(ID) Lytes of tke field to e
translated, whether data, address, or tatle index, is
unpecked into FIL.

The translaticn of the relocatable word is a functicn
cf the ccntents cf the field CE(ID). If CE(ITL) is equal tc
1, the ccrtents c¢f FID are data and no translaticn is
nécessary. If CP(IL) 1is equal to 2, the ccntents of FLD
rerresent an address relative +toc the subrrcgrarm and are
added to the sulprogram address. If OP(IL) is egqual to 3,
FLL contains an index tc the ccrmon syrkcl list fcr a common
area address, ard this address must ke retrieved from the
CABSIC field cf the ccmmon area descriptor indicated by the
address in the ccxmcn symtol 1list. If CP(ID) is equal to 4,
FID ccrtains an index to the undefined symbol 1ist, and
depending'u;cn the result c¢f calling the function CEECKLINK,
€ither the aksclute address of the defined syrkcl cr the
aksclute address of the 1linkage entry £fcr that defined
syekecl is retrieved. If CP(ID) is equal tc S, then FLD
ccntains an index toc the complex address»table, and the
ccntents c¢f that table entry must ke retrieved. 1f OP{IL)
is equal tc €, then the end of the relocatatkle input has
teen reached and an attempt to made Ly the secretary to

input ancther blcck cf relccatatle code.

In the cases cf CP{IL) equal to 3, 4, or 5, then the
possikility of an ircremert tc the address indicated by the
relccatakle word exits., If II(ID) is equal tc 0, there is
no increment. 1f II(IC) is equal tc 1, then the ccntents of
the next FS{IL) lkytes in the input string are added to the
address stcred in X. I1f II(ID) is eéual tc 2, then the
ccntents c¢cf the next FS(IL) bytes in the input string are
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suktracted frcr ttre address stcred in X.

Cnce the address is ccmplete, it 1is flaced intc the
address gpcrticp cf FLD. 1In all cases, data cr address, the
ccntents c¢f FILC are placed into the next FS({ID) tytes cf the
cutprut buffer, and translation proceeds with the next

relccatable wecrd.

If CE({ID) is equal to 6, another bleck c¢f relccatatle
ccde is input and translation continues. However, if an
end-of-file mark is reached, the <contents of the output
Fuffer are «cutput, and relccatakle translaticr of tte
sukprograr is ccmplete. The ocutput tuffer is cutput either
at the end c¢f the translaticn c¢r whenever thebcutput Fuffer
fills up (KT=N(CUT)).

Figure 15 shcws the aksclute element prcduced frem the
exangle., The first rlcck is the header reccrd, the second
Elcck is the executable code for subprogram MAIN, the third
Elcck rerresents the executatle code for sukprcgram SUBRRTN,
and the fcurth blcck represents the executalkle ccde fcr the
sukprogranr SINCCS. The second tlock results from the
trarslating the relocatakle ccde in the $TEXT ccntrcl reccrd
cf sukprccrar M2IN showr in Fiqures S5(a) arnd S(b). The
sukprograr descripter fcr MAIN is shcwr in Figure 54 at
lccaticns 10@53 through 1020. The ccmmen symbol list
tegins at 10208,
and the sutprcgram address is found in the AESIOC field
(10123).

The first wcrd of the sececnd Lkleck o¢f the aksclute

the undefined symbol list tregins at 1015,

€lenrent ccrtains the main segment indicator (555555?) in the
first half, and the subprogram address in the second half
(10128).
translated directly tc words 1 and 2 cf the executatle ccde.

-~

Felccatable wcrds 1 and Z represent data and have

Ffelccatakle wcrds 3, 5, 7, 9, 11, 13 and 1% represent ncn-

address parts of instructicns and have translated directly
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to the first kalves cf wcrds 2, 4, 5, €, 7, 8, and 9 cf the
executakle ccde. Belccatakle werds 6, 8, 12, 14, and 16
represent addresses relative to the subprogram. These
relccatable wcrds translate, by adding them tc 1012g' tc tkhe
seccnd halves «c¢f words 4, S5, 7, 8, and 9 in the executakle
code. The relccatable word U4 is a reference toc an external
address. The <ccptents c¢f the address pcrticn cf the FLD
field index the seccnd location in the common systol 1list.
This is the entry &t 10168 in the tables which pcints tc the
aksclute address in the first address porticn c¢f the word
10318. The address in this lccation is 122&8. This address
is rlaced intc the address part of FLD and the whcle field
teccmes the =seccnd half of word 3 in the executalkle code.
Similarly, the external addresses specified Lty relccatakle
words 10 and 18 beccme the second halves of words € and 10
in the executakle ccde. Eelccatakle wcrd 17 =specifies a
common area. Tke FLD field indexes the first lccation in
the ccmrmcr syrkcl 1list fcr this sukprcgram (lccated at
10208)' This <ccntains the address of the common area
descriptor fcr BRICCK, which has been assigned abksolute
address 10008. The increment indication field of the
relccatakle wcrd is equal to 1, and sc the conterts ¢cf the
increment field (5) dis added tc¢ the address (100Q8) to
produce trke address stored in the first half cf wecrd 10 in
the executzkle ccde. It shculd be noted that in all address
ncdificaticns, the translation only effects the address part
cf the FID field, and the contents of the rest of the field

arte left vrtcuched.
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A__Unified Hardware-software

The ccntenticn of this fpaper is that thrcugh close
examiraticn c¢f system scftware, a hardware-software mix can
te achieved that will improve the performance of the systen.
This sectiocn €xamines the algorithm for the 1lcader
(rresented ir secticn 4) in general and a particular
function o¢f the 1lcader in detail in order tc provigde
evidence tc this ccntenticn.

In order tc draw reascratle ccnclusions, a measure of
performance is defined. In estaklicshing this measure, we
will assuwe that the overall scftware design cf the =systenm
is fixed. This removes discussiors c¢r the nmerits of
different algcrithes from the scope of the rparer. Within

this frarework, an ipprovement in performance of a systen

Frcgrar will te defined as a reducticon in the syster's
rescurces allccated tc that progranm {i.e., systens
cverhead) . Measurement c¢f systess resources can te
separated intc the specific demands placed - upcn thcose
I€escuyrces: prccesscr time, wmemcry, and auxiliary memory.
Within this r[paper we will concentrate on two: central
prccessor time ahd ﬁemoty. Central processor time (CEU
tirme) will ke reasured in terms of main memcry cycles.

Mexcry usage will be represented bty the space-time integral

t,
Sn (t) dat
tl

where t2-t1 regpresents the pericd that memory was used and

M{t) represents the rmemcry used at time t. 1In a word
addressakle memcry, the units are Wcrds/seccnd. The
measurement c¢f CPU is a traditicnal methcd while the memory

rcasurement has cnly tecome necessary since the advent of



135

multiprcgrarmming. BAs ar example cf the magnitude cf systenms
overhead ir ccntempcrary systems, the UNIVAC 1108 EXEC &
System requires a rwinimun of €5000 words «c¢f  ©wemcry,

ccntinually.

By itself, tte definiticr c¢f perfcrmance igprcvement is
nct satisfactcry tecause it dces not irclude the conccmitant
ckange in wmcretary cost. Although a 10 per cent reducticn
in CPU tire and memory words/seconds may ke achieved, if the
ccst cf the ccrputer doubles then the overall tenefit is
detatatble. Therefocre, any hardware refinerents must take
into ccnsideraticn the cost.

Given a methcd of measuring performance it is helpful
tc examine previcus hardware refinements that have resulted
in 8 reduction of system cverhead. Amcng these are the
introducticn c¢f 1index registers and multifle ébbumulators,
and the develcprent cf hardware indirect ‘addressing
secuences. These changes and cthers have led to larger and
rcre fpowerful instruction sets. Index registers and
indirect addressing allcw intricate addressing tc ke
rerfcrred by a single instruction, resulting ir a saving ig
CPU tipe and memcry. Fart of the saving in CPU time is due
tc the reducticn cf instruction fetchs from main memcry, and
part 1is due tc the fact that more is being done in the
instruction fetch cycle. The additicn of wcre hardware
registers 1is advantagqecus principally kecause it frcvides a
high speed lccal stcre fcr the storage of frequently used
variables and storage of partial results. Another
noteworthy advance has Lkeen the advent of patfial werd
agddressing. This allcus for the efficiert racking of
infcrmaticn (freeing memcry) and retrieval of informaticn
(freeing PEICIy cycles). Cne of the more pertinent
additicns has keen the inclusicn <¢f special instructions
that are aimed rarticularly at alleviating systemr cverhead.
Fcr example, the UMIVAC 11C8 instruction set includes a set
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cf instructicns for searching 1linear lists in contigucus
memcry locaticns. These irstructions provide the power of a

sukroutine in cne instruction.

It may ke possible tc generalize these past successes

as fcllows:

{a) judicicus selecticn c¢f hardware cfter precludes
awkward and repetitive instruction sequences;

{b) cften-rereated instruction sets should te isclated
and the possibility of providing a hardware
replacerent considered {in particular, list
cgeraticns shculd ke examined in this light) ;

{c) the cost cf instructicn fetch should not te
cverlcocked.

The generalizaticns akove are ky no means a «ccmplete set,
kut they dc prcvide some directicn to the study cf a better

hardware-=cftware mix.

At this point it is worthwhile to discuss the nmethod of
study. BEardware implementatior and testing is extremely
exfensive in the traditional manner. It is better if a
sirulation of the ©proposed hardware implementation can te
effected first in software. Simulations are generally slow
kut allow extensive ard inexpensive debugging tc te carried

cut.

later in this section (5.3), an implementation is
descrited in detzil in the Cceputer Design Langquage [1€].
This language allows the user to describe the hardware
configuration and 1logic in clear, precise statements. The
simulatcr for this 1language [17] provides a wethcd of
testing the hardware description under a variety c¢f input

ccnditicons.
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£.1 Micrcrrogramping _As__A__Method Cf Unified Fardware-

Software Lesigr

The prcblem with hardware implementaicns cf traditional
scftware functicrs is that, ir gereral, the espense is only
warranted in those functicns that are wused freguently. A
secend prckler eéerises fcr ccoplex hardware implementaticns
if a design error is disccvered after producticr has Leqgun.
A mcre tasic prcklem 1is the fact that the ccst varies in
rrcpcrticr with the ccmplexity of the implementation. These
three factcrs generally comkine to <cause the hardware
designer tc avcid hardware implementations of complex
functions, furcticns that receive woderate use, cr thcse
functions that have any chance cf undergcing a change in
design. '

These prcklers have recently Lbeen circumvented Ly the
ricrcprcgrammed {cr stored logic) computer, which ccmbines
the speed and parallelism of hardware with the variety and
€ase cf rcdificaticn of software. A wicrcrrcgrammed
ccrputer can be described as a computer within a ccmputer, a
descrirticn that =stresses 1its dependence on twc memcries.
In the criginal thesis advanced by M. V. Wilkes [18],
ccnventicnal machine instructions can be viewed as a numter
of sequential c¢r rparallel register-to-register transfers

carried cut under ccntrol of a small **'microprcgram.‘'’

This is precisely the form a microprogrammed conputer
takes. There are twc memcries: the traditional main memcry
and a swaller, faster ccrntrcl remcry. The ccrtrel meEmCIy
may e read-cnly. The hard-wired instructicn set consists
cf a set c¢f wmicrc-crders indicating sirfle register
cperations, main nmemcry read and write, and contrcl memory
read and, ppcssibly, swrite. A formal set of machine

instructicns is inrplemented by providing a microprogram that
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interprets and carries cut the functicns sgecified Ly each

irstructicn wcrd.

Scme cf the pcssikilities are imrediately evident. Cne
microprcgrammed ccmputer cculd Yre rrogrammed tc execute the
irstructicn sets c¢cf many computers. This is, in fact, the
rrirary vuse cf microprogramming today. The IBM 360 series
rachines cffer upward compatakility to IBM 1401 and IEM
7C<C/s7C9%4 prcgrars and inter-machine compatatility fcr 360
rrcgrams [1¢]. 1This process is called enulation. Recent
rrcpcsals alcng these 1lines have bLeen tc¢ micrcprogranm
comnputers tc directly execute a higher-level language such
as FOFTIRAN [20)]. Cne such implementaticn, fcr language
FULEF, has Yreen effected [21]. Many cther uses cf
microprogramming have keen prcpecsed {22)] [237 [24] [25].

Whether cr nct the microprcgraemed ccrputer is tc te
viewed as the npext step in the evoluticn cf a coméutet, a
pcsiticn held bty many [26] [27] , it obviously prcvides a
ccnvenient methcd of testing new hardware logic. Scre cf

the advantages:

(a) mcdificaticn cf the lcgic is a simple task cf re-
prograreing.
() ccnversicn to hardware is straight-fcrward cnce

the logic is dekugged,

(c) ccrplex functions can ke implemented as easily and
at little more cost than simple functions,

(d) specific application functicns may be irplemented
in w@micrcprogram and only 1loaded intc ccecntrcl
remcry wken they are tc ke used.
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%.z Icader Functicns_Amenable_To Microprogranm

- " ——— S > S — —— " W X A A o e s e -—

This secticn proposes the implemerntaticn cf a numker cof
lcader fetrcticpns Lty microprogram in order tc imprcve the
rerfcrmance of the lcader. The examples were chosen tecause
they are representative of the functions that are perforred
often withir cther system prcgrams or tecause they show the
range of functicrs that can ke implemented in this fashion.
The examples discussed are:

{a) irplementation cf the queue in hardware,

{b) lccating the takle pointers and hash-tatle in

ccntrol memory,

{c) implementaticn of search instructions fecr linked
lists,

{d) micreoprcgramming the complex calculations,

(e) ricrcprcgrarring the translation of relccatable

code tc executakle ccde.
Thke last examrle is descrited in detail dir a =separate

suksecticr.

The queue descriked in the algcrithm is used to store
the mass =storage locaticns cf thcse subprcgrams that have
teen lccated in the library index. A gqueue has entries
added at one erd and retrieved from the cther. The prorosal
is tc have the first several locations and the last several
lccaticns <c¢f the gqueue located in a fixed set of hardware
registers w%ith the 1est residing in main nmenmory. A
ricroprogram wculd automatically transfer the infcrmaticno
frcem register tc register, from main memory to register, and
frcm register tc pain memcry as entries were deleted from or
added to the queue. This micrcprogram wculd alsc maintain
the 1list <¢f availakle space frcm which the gqueue received
its entries. This ccncept has been implemented on the
Burrcughs B5500 [ 1] in the form of a push-down stack. The
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advantages tesides the autcmation of 1list wmaintenance, is
that all éccess to the information 1is at register-tc-
register speeds. 1This implementation would te extrerely
useful tc any syster fprcgram using stacks, <cueues, cr
doutly-lirked lists.

The tatle descriptcocrs descrikted in Figure 18 are used
with high frequency throughout the algorithm. If they were
lccated in a thigh speed local store (register nmenmory),
access times fer retrieving the data in the respective
takles could ke halved. This is alsc true c¢f the srall hash
takle wused withir the defined symkcl table (Figure 25). 1In
fact, lcading any cf the small takles that are wused within
tte algorithm wculd Ye advantageous. It should ke noted
that these tables reed c¢cnly be loaded when they are tc rte

used.

The rrevicus discussion of the UNIVAC search
irstructicns suggests a more ambitious set <c¢f 1list
operations., Systems prcgrams use linked lists for rost data
storage {singly-linked, dcukly-linked, tree =structures,
circular lists, etc.). The flcw charts in Fiqures 34, 36,
3%, 4£, 4€, and £1 all ccrtain list searching sequences. A
set o¢f rprimitive search <crperaticns vwculd ke extremely
useful. These «could ke micrcgrogrammed to respond tc list
operation instructicns that wculd specify the address field
(cr fields) tc search along, the field cf the list cell tc
ke seazchéd, apd several values to respond to {the value

desired, the end cf list indicator, etc.).

The flow charts in Fiqgures 21 and 32 show the ccrplex
calculaticn functicn that perfbrms the crerations indicated
by instructions cf the form shown in Figure 6. A set of
cenplex calculaticn instructions is associated with each
sukprogran. These instructions reference data via cne of
the three syrkcl lists (undefined, cowmmor, anrd cceplex) fcr

the sukprcgram. Ey creating a micrcprogram tc interrret the



141

instructions and perform the indicated operations, and
locating the three symbol lists in a register store, a
savings in time and memory can be achieved. This is not
difficult to understand because the comparison is between
implementing the interpreter in slow memory versus

implementing the interpreter in fast memory.

5.3 Microprogramming the Pranslation of Relocatable Code

To Executable Code

The last example is the microprogramming of the function

that performs the relocatable code translation of the loader.

The conversion to microprogram requires three steps, each
involving some change in the algorithm itself. First,
the algorithm is flow charted from the existing software.
At this point, it may be desirable to substitute a more
clear description of the algorithm then to translate the
software code to flow chart exactly. In our case, this
step is represented by the flow chart in Figure 60. The
second step is to convert the flow chart to hardware
sequence charts. At this point decisions about fegisters
and memory must be made. The algorithm itself may be
modified to take advantage of a particular hardware
implementation. For example, the hardware addition of a
shift register obviates the need for the complicated BYT
function used in the flow chart. The third step is the

conversion from sequence charts to microprogramming. At

this point, the hardware control is defined and an attempt

is made to minimize the execution time. The minimization
is accomplished by maximizing parallel operations and by

performing as many tasks as possible in a memory cycle.
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This example. is a modification of an example presented
in a previous report (28). The reader is directed to that
report for the details of the implementation. In order to
simplify the presentation, only part of the flow chart in
Figure 60 was implemented. The complex address operator
(OP=5) was deleted, and the value of 5 was used to indicate
the end of translation. Tﬁe microprogram assumed that the
input buffer was already loaded and terminated when OP was
equal to 5 rather than attempt another input. The function
CHECKLINK was ignored and the RELAD field is assumed to be
switched with the LKADR field in the defined symbol
description word (T+0 in the flow chart).

The design of the configuration assumes a word format
like that of an IBM 7090/7094. The configuration, micro-
orders, and microprogram are described by the Computer
Design Language (CDL). This language, and the methodology
above, are attributable to Y. Chu (16) (28).

Implementation of the relocatable translation function
as a microprogram supports the arguments for the use of
microprogramming in a unified hardware-software design.

As shown below, reductions in CPU time and memory reguirements

are effected.

Savings in Computer Time

It is possible to estimate the speed of translating the
executable code (i.e., instructions or data words). At one
extreme, it requires 5 main memory cycles to translate a
two-address instruction where the addresses are external

addresses. (It requires two
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relccatable wcrds fcor cne such instructicn.) let the main
memcry cycle tire ke 1 micrcseccnd. Then, the micrcgrogranm
ccrtrclled translater is carpakle cof preducing frem 77,000 to
20C,000 irstructicns cr data words per second. The required
translaticn time fcr a two-address instructicon <cculd te
further 1lcwered tc 9 main memory cycles if the syskcl lists
‘for the relccatatle ccde.resided in ccntrol rercry. '

Fcr the sake c¢f comparison, the software implementaticn
ocf ¢the relccatable translaticn cn the IBM,?OQO/?CQQ Lcader
(IFICR) was examined ky ccunting lines c¢f ccde and charging
one memcry <¢ycle for instructicn fetch and executicn
{assuming data fetch is overlarred), it was fcund that the
ricrcrrcgrarmed translatcr reduces CPU time by a factor of
1C. A fairer ccmparison may ke to implement the algorithnm
in Figure 6C ir =software «cr a machine with a larger
instructicn set (e.g., that cf the UNIVAC 1108). In this
case, the micrcprogrammed translator still represents an
irprcverent, redecing CPU time Lky a factcr of 3.

Ccre_Savirgs

Similar analysis reveals that a software implementation
requires ltetween 100 tc 200 memcry lccaticns tc hold the
machine instructices. The micrcpreogrammed trarslatcr frees
these locaticns for cther use. This particular gain is
screwhat dampened by the requirement made upcn ccentrol
mexcry by the nwricroprogranm. However, it should te noted
that the nmicrcprogram requires only 24 words «c¢f storage
rather thar 100 c¢r mcre. The varialtility and parallelism of
the micro-instructicn make this possikle.

Saving In_Esrdware

As thke ccst cf hardware fakrication can <c¢verride the
tenefits c¢f reduction in CPU tirme and main memcry usage, it
is worthwhile tc ccmpare the hardware described with that of
existirg ccmputers. The IBM 70S0,70¢€4¢ prcvides a good

exarple as it has reen used as the kasis for the ccmpariscn.
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The hardware required for the algorithm, shewn in Figure €z,
clcsely apfprozimates the register set on the IEM 7C94 (e.qg.,
seven index registers, an accumulator, a multiplier/quctient
register, an irstruction register, etc.). Therefore, it can
Fe said that the prcpcsed interral register struocture of the
microprograsrred machine aprroximates that c¢f ccrventional
ccomputers. Tte majcr differerce is, cf course, the ccntrol
rexcry. It shculd ke noted that the <cost of a ccecntrol
rercry 1is cffset ty the savings achieved ty dispensing with
wired-in lcgic.
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urepary, Ccnclusions, And_PFecommendations

This paper set out tc dewmcnstrate the advartages of a
vrified hardware-scftware design approach to an cperating
system thrcugh microprogramming bty concentrating cn a single
systewr prcgrar, the 1loader. The loader was considered in
its trcader sense cf a relocatable allocator and 1linkage
editor. The furcticrs c¢f the lcader were reviewed, a
specific descripticn cf the input and cutput given, and a
detziled algcrithr set forth. Micrcprcgrawmrirg was advanced
as a method of achieving hardware-software integration. The
algcrithe «as examined for functicns that wculd tenefit
systes perfcrrance if implemented by microprogram. Several
such functicns were outlined and one was described in great

detail and irplemerted thrcugh simulation.

By reviewing the locader in a general setting and in
some detail, wmary design protlems have been presented. In
the discussicn cf cverlay segmenting, the ccrrariscn of tree
structured segrentaticn with unstructured segmentation has
cshcsn the advaptages and disadvantages of both. The tree
structure allcws many decisions to ke made about locating
sukgrcgras and ccmmen areas, but 1is restrictive. The
unstructured pethcd allows more freedom in segmentation and

sirplifies autcratic loading.

An irplicit result in the study of the 1loader is the
necessity cf auxiliary stcrage to the implementaticn of the
algorithm. The need arises kecause, in the urper limit, the
sum of the relccatakle elements must exceed that cf the
finished gfprograr (even with rtacking cf infcrmation).
Ferthermcre, the vse of anxiliary storage has a direct
effect on the use c¢f data structures. For exarple, the
algcrithr presented in section 4 stored the relccatatle ccde
in auxiliary stcrage. An algorithm that relied upcn
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chaining c¢f addresses withir the blocks of relccatakle ccde
would have teen pcre difficult tc irplement.

In addition, the study cf the 1lcader allcwed =several
types of dats structures tc ke ccmpared for ease cf stcrage
and retrieval and mraintenance ccocst. Fcr examrle, hash-
ccding was ccmrared with 1linear 1lists and tinary tree
structures. In the final design, hash-coding w#was ccmbined
with a sinple 1ist structure. This reduced the requirements
¢n nemery fcr the hash takble. The tinary tree structure was
discarded because cf the cost of rebalancing the tree.

The advantages of the unified hardvware-software design
vere re-enforced Lty enumerating past successes, cutlining
some possiklities suggested Ly the 1lcader, and rresenting a
methecd c¢f future exploraticn. The agpprcach was seen to
reduce system cverhead, CPU tire and memory usage. Due to
the pcssikility cf high bardsare costs, it was pcinted out
that a careful talance nmust ke maintained.

The success c¢f the irplemertaticn in section o
underlines the advantages cf micrcprogramming as a methcd cof
hardware-scftvare design. Interpreters cf specialized
lancuages, 1in this case the relocatakle language, can ke
inrlemented easily by microprcgram. Therefore, rather than
writing =systemr ¢frcgrams in one general-purpose machine
language, specific, high pcwered instruction sets can te
develored for each <function. Control memory could hold
those interrretive wic:oprcg;ams used post often. In the
locader, it may e advantagecus toc use a list processing
language, a sirfple calculatior language (as shcwr in Figure
6), and a language for relocation where each would each ke
interpreted ky a separate micrcprograr in centrcl memcry.

In conclusior, it appears that the wunified hardware-
scftware design car ke of immense lkenefit in the develcopment
cf crerating systers. Having examined the loader o¢nce, it
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can be inrlemented in any minimal microprcgrarmed ccmputer.
This shculd mear a spaller lead time in designing a new
system and a mcre reliakle design. The direct fkenefit is a
reduction ir system overhead, while a ky-product ariears to
te a mcre varied rrograsring envircnment fcr all. However,
in crder tc understand clearly the tenefits of the unified
bardsare-scftware design arpprcach, mcre ambiticns studies

shculd ke urdertaken, including:

e e I — e —— — i V.

€vel rrccedural larguages. A rumber «c¢f =studies

have rrcven tte possikility ¢f such machines.

. sty safln o Ty A > i i . s —

rachine__that must_use a_ltacking store tc hold its

——— T i o — >t o — . v

set_cf_pmicrorrogranms. A study of this nature

- —— g e s ot ol e 200 il 2, i e o

cculd draw heavily on work done in paging and

segmenting systems. This study 1is necessary in
crder tc determine when it 1is feasikle tc use
tacking store tc stcre micropregranms.

———— ot T o o

i
icroprogram__ccntrclled _cperating

— e e . i

o
stenm, The language should te atle to sirulate
asyprchrcncus processes, rotating memory devices,
and prcvide statistics upon the performance. This
could ke an extensicr of an existing language like

the Ccmputer Design Language.

implementation _of a coprlete
_____ ase should ke attacked with the
whcle system in mind in order tc provide

ccnscienticus debate on the wvalidity c¢f past
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systews designs.

® Inplement the dynamic_lcader as_a_microrregrags.
This cculd ke extended to a general segmentation

cr ragirng syster.
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Cescription Cf Input In Backus-Naur Forr

The input tc thke 1lcader is summarized kelow in Eackus-Naur
Fcrr (BNF). The Backus—-Raur Form consists c¢f a series cf
defipiticns. CTefiriticns are productions of the form
' <left-side> ::= <right-side>,

which is read, "<left-side> is defined as <right-side>."
The Ekrackets < > are used tc enclcse syntactic categories.
The right-side cf any ptcduction is one c¢r rcre definiticns
nade Up cf «cther =syntactic categcries «c¢r terminals.
Alternative defiritions are separated by the vertical slash
{]) - Terminals are unbracketed characters or strings ctf
characters. Ip crder to leave the definition as general as
possikle, scme syrtactic categories are defined as a sort cf
higher 1level terminal. These syntactic categcries ars
merked with an asterisk {(¥). Thié is done in those cases
where assumpticrs wculd have tc be rade akcut the wachine
specificaticn (wcrd formats, <character set, newncry size,
etc.) in crder tc define tte terminal string. For example,
tc define further the rake-up cf a <segment nare*> requires
kncwledge cf the allowable characters; to define further
<relative address*> requires knowledge of the numlter cf
addressalble lccaticns. BRather than restrict tte algorithr,
further definiticr is left tc the particular irplementaticn.

The BXF is extended by adding references to the £flow
charts that p[perfcrm the semartic interpretaticn. This is
cnly done for the majcr categcries and always refers to the
left-side of the defiriticr which it fcllows. These
references are kracketed ky the "rullet" wmarks (). For
exaerle, the ccntrcl words $RELOC, $SEG, $COPN, $UNL, $DEF,
$CMELX, and $TEXT are recognized in flow chart 1.2 ({(Figure
z29). Thertefore the definitcn of <ccntrecl word> in this
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fcrmnat is:

<ccntrol werd> ::= 3$RELOC | 3$SEG | $CCEN }
$UND | $DEF | S$CEFPLY |
$TEXT £ 1.2 ©

This fcrr is used cnly for the major syntactic categcries.
The syrtactic categories that ccmprise the defintion cf
these wmajcr categcries are either interpreted within the

same flcw chart cr stcred for later interpretaticro.

<lcader input> ::= <lcader command><program>
<end of information> g 1.0 &

<lcader ccrmand> :z:= $ABSLT

<trcgrag> ::= <unsegmented program>|
<segmented grcgram>

<segrented program> ::=
<segment descriptcir><subprogram setd>|
<segmented rrogram><segment descriptror>

<sukprcgram setd>

<segment descriptcr> ::= <segment delimitcr>
<segmert name*><relaticn part> o 1.3 &

<segment delipmitcr> ::= $SEG
<relaticn rart> ::= <rull>} ( <predecesscr listd> )

<rredecessor list> ::= <predecesscr>|
<rredecessor list>,<predecesscr>
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<rredecessecr> ::= <segment name*>

<unsecmented program> ::= <sukprogram set>

<subfrrcgram set>::=<relocatakle element>i
<subrrogram set><relocatakle e€lement>

<end of irformaticn>::=<E0I rark*> o 2.0 o
<relccatatle element> ::= <prefaced<preanmlble><text>
<preface> ::= <preface delimitor><subprcqrar name*>
<block indicator*><sukprogram size*>
e 1.4 ¢

<prefece deliwiterd> ::= SRELCC

<prearble>::=<commcn symkols><undefined syrtols>
<defined symbols><complex symbcls>

<commc¢n symbcls> 2:= <nulld|
<ccmmon delimiter><number of entries*>

<common symbols tatle> p 1.€ o

<ccmmon delimiterd> 2:= $COMN

<commcn symbcls table> ::= <common taltle entry>|
<ccmmcn symkcls takle><ccemrcn tatle entry>

<ccmecn takle entry> ::= <symtolic name*>
<block size*><relative address*>

<undefined symkcls> ::= <nulldj
<undefined delimiter><numker of entries*>
<undefined symbols takle> m 1.5
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<undefined delimiter> ::= $UND

<undefined symbcocls takle> ::=
<undefined tatle entry>|
<undefined symtols tatle>
<undefined tatle entry>

<undefined table entry> ::= <symlolic name*>

<defired symkcls> ::= <nulld>]
<defined delimiter><numker cf entries*>
<defined symkols table> o 1.8 n

<defined delimiter> ::= SDEF

<defined symbcls tabtle> ::= <defined takle entry>|
<defined symbols table><defined taltle entry>

<defined takle entry> ::=
<synkolic name*><value*><relative address*>

<ccmplex symkclsd> ::= <nulld|
<ccmplex delimiter><number cf eptries*>
<tatle size*><ccrplex takled> o 1.7 &

<ccpplex delimiter> z2:= $CMPIX

<ccmplex table> :1:= <complex takle entry>|
<complex tabled><complex taltle entry>

g 3.1 ¢

<ccmplex takle entry> ::= <lcad cperatcr*>
‘arithmetic expression><store cperator*>
<tatle index*>
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<arithmetic expressicn> ::3= <takle itend}
<aritheetic exgressicn>
Karithretic creraticn><takle item>

<table itemd>::= <table indicator*><talkle index*>

<arithmetic cperaticnd>::=<additicn>|<suktractiondj
<multiplication>|{<division>

<text> 3= <text delimiter><text kody><text end#*>
r 1.9 o

<text delimiter> :1:= $TEXT

<text bcdy> 21:= <text weordd>|<text rkody><text word>
r TEARNS n

<text word> ::= <data wcrd>}<address wuwcrd>

<data wcrd> ::= <data operator*><field size*>
<data itenmn*>

<address scrd> ::=<relative addressd>|
<ccmmon address>|
<undefined address>]
<complex address>

<relative address> ::= <relative address cperator*>
<field size*>relative address*>

<common &ddress> ::= <ccmmch address cperator*>

<field size*d><address partd

<external address> ::= <external address coperator*>
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<field size*><address part>

<ccmplex address> ::=<ccmplex address cperatcr*>
<field size*><address part>

<address part> ::= <nc increment indicatcr*>
<takle index*>|
<add increment indicator*><tatle index*>
<increment*>]
<suktract ircrement indicatcr*>
<takle index*><increment*>
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